A Prototype Restructuring Compiler

Aart J.C. Bik

May 6, 1992

INF/SCR-92-11

Preface

This document presents techniques and methods used to implement a prototype
source to source restructuring compiler, that enables the user to define program
transformations which the restructuring compiler will use, with a transforma-
tion language. This is in contrast with most conventional restructuring compil-
ers, that have a fixed set of internal transformations, not accessible for users.
By giving the user explicit control over the set of transformations of the restruc-
turing compiler and over the application of these transformations, more insight
in the behavior of compilers can be obtained, leading to the development of
better restructuring compilers. Some results achieved by using this compiler on
some FORTRAN 77 programs are given, together with some issues for future
research.

I would like to thank dr. H.A.G. Wijshoff for his support and advice during
the implementation of this compiler. His constructive input during all phases
of the implementation and testing, was of great help. I would also like to thank
drs. A.H. Snippe and ir. A.J. Niessen for their suggestions during the writing
of this article.

Aart J.C. Bik

Contents

1

Introduction

1.1 Interactive Environment, .
The Source Language: a FORTRAN 77 dialect

2.1 Lexical Analysis
2.2 Syntax Analysis
2.3 An Example of Syntax Analysis
Semantic Analysis

3.1 Type Checking
3.2 Label Related Checks
3.3 Flow of Control Checks
3.4 Warnings and Errors oL
3.5 An Example of Semantic Analysis
Building the Program Data Structure

4.1 The Symbol Table
4.1.1 An Example of a Symbol Table
4.2 Declaration Statements
4.3 Executable Statements and Expressions
4.3.1 Constants
4.3.2 Variables oo
4.3.3 Operators
4.3.4 DO-loops
4.3.5 Assignment Statements
4.3.6 Logical-IF and General-IF Statements
4.4 STOP statements
4.5 Memory Management L.
4.6 Some exampleso

Data Dependences

5.1 Data dependences on Scalar Statements
5.1.1 True Dependence or Flow Dependence
5.1.2 Anti Dependence
5.1.3 Output Dependence
5.1.4 Input Dependence

5.2 Data Dependences on Indexed Statements

Data Dependence Analysis
6.1 Data Dependence Table
6.2 Data Dependence Computation
6.2.1 Optimizations. oL
6.3 Dependence Test between Two Variables
6.4 Direction Determination
6.5 Resulting Dependences
6.6 Improved Data Dependence Computation

10
10
13
18

19
19
24
25
25
25

28
28
30
31
31
32
33
35
37
37
38
38
39
39

42
43
44
44
44
45
45

6.6.1 Improved for Prefix of ‘=’-directions 68

6.6.2 Improved for Prefix of one ‘<’ or ‘>’ direction 71
6.7 Computation of Number of Underlying Dependences 73
6.7.1 Scalar Like Variables 73
6.7.2 Indexed Variables 75
6.8 Examples of Data Dependence Computation. 77
6.9 Concluding Remarks 83
The transformation language 90
7.1 Lexical Analysis 91
7.2 Syntax Analysis. o 92
7.3 Semantics of the Transformation Language 94
7.3.1 Example of semantic checking 95
7.4 Storing Transformations 95
7.5 Transformation Definitions 97
Transformation Application Phase 107
8.1 Determination of Next Matching Fragment 108
8.2 Evaluation of Conditions 108
8.3 Presentation of Matching Fragment 110
8.4 Computation of Resulting Fragment 110
8.4.1 Templates 110
8.4.2 Statement Pointer Variables 111
8.4.3 Expressions 112
8.4.4 Merge Operator 112
8.4.5 Vectorizing Operator 112
8.4.6 Introduction Construction 113
8.5 Checks Performed during Transformation Application Phase . . 113
8.6 Presentation of Resulting Fragment 114
8.7 User Response Processing 114
8.8 Adaptations to other Modules 118
8.9 Example of Interactive Restructuring 119
8.10 Some Results on FORTRAN 77 Programs 122
Unparsing 123
9.1 Program Header 123
9.2 Declaration Statements L. 123
9.3 Statements and expressions 123
9.3.1 DO-loop/DOALL-loop statements 123
9.3.2 Assignment statements. L. 124
9.3.3 Logical-IF statements 124
9.3.4 General-IF statements 124
9.3.5 STOP statement 124
9.3.6 Expressions 124
9.3.7 End of Program 125
9.4 Example of unparsingo L oL 125

10 Future Research

A

o o «®

a= RO R I <

-

K

L

The Interactive Environment
Error Messages (F77)
Warning Messages (F77)

Error Messages (Transformation Language)

D.1 Semantic Errors.
D.2 Application Errors00

File Organization

Program Type Information

LEX Definitions for the FORTRAN 77 Dialect
YACC Definitions for the FORTRAN 77 Dialect
Supporting YACC (F77) Routines

Symbol Table Routines

Memory Management Routines

Data Dependence Storage Routines

M Data Dependence Analysis Routines

N

O
P
Q
R
S

-

Transformation Type Information

LEX Definitions for the transformation language
YACC Definitions for the transformation language
Unparsing Routines

Transformation Storage Routines

Transformation Application Routines

Environment

127

129

130

131

133
133
134

134

137

139

142

147

153

157

164

169

192

193

195

199

205

212

228

1 Introduction

The goal of restructuring compilers is to transform serial program code, written
for single processor machines, into parallel or vector code, without changing the
semantics of the original program. By applying certain transformations to the
serial source code the restructuring compiler tries to achieve the best possible
usage of the vector or parallel characteristics of the target machine. Because
the bigger part of the runtime is spent in loops, the aim of most transforma-
tions is the eventual vectorization or concurrentization of loops. Some program
transformations can help in achieving better resulting code rather than the
straightforward conversion of loops into vector or parallel code, by transform-
ing the structure of loops first (e.g. resulting in stride-1 vector instructions
or a parallel loop with more statements in its body). An overview of these
transformations and their goals, can be found in [Bik91].

Although some restructuring compilers perform well (e.g. KAP and VAST),
there is still some scepticism about the quality of the resulting code. Most of
that scepticism is probably the result of the following two facts. First, it is
often unclear which transformations a restructuring compiler applies, for what
reason, and in which order. Also in most cases, programmers using restructuring
compilers, cannot guide the compiler towards a certain direction, to force the
best exploitation of potential parallelism. Second, most transformations defined
in restructuring compilers are only program transformations. More parallelism
can be achieved, if the restructuring compiler is able to perform data structure
transformations as well as program transformations. Therefore, it is useful
to examine if it is possible to solve both problems by using more advanced
restructuring compilers. A start has been made by considering the first problem.

This article presents the implementation and use of a prototype restructur-
ing compiler in which the user can define transformations on the program, and
in which the user has explicit control over the application of these transforma-
tions. The transformations can be specified in simple transformation language
which can define transformations on program patterns and with the ability
to associate conditions with every transformation. The initial version of this
transformation language must be powerful enough to express the basic trans-
formations (vectorization and concurrentization) as well as other optimizing
transformations, and serves to gain more insight in the required nature of such
languages. Hopefully, the study of the behavior of the prototype compiler using
this simple transformation language, will lead to more advanced languages and
resulting restructuring compilers.

Since many existing applications requiring high speed computations are
written in serial FORTRAN 77, it is very useful to have a restructuring compiler
that can apply vectorization and concurrentization to this language. All the in-
vestments taken in developing this serial software can be saved by automatically
converting this software into parallel code instead of recoding all the programs
by hand. Therefore the source language of the prototype restructuring com-
piler is chosen to be a dialect of FORTRAN 77, although all the techniques
and methods used to implement this compiler can aid the implementation of
a compiler for any FORTRAN-like 3"¢ generation language. Naturally such a

restructuring compiler is not only helpful in converting existing software, but
can also be of great assistance in developing new parallel programs.

To keep the resulting code as portable as possible, it is decided to generate
FORTRAN 90. This language is almost identical to FORTRAN 77 but has
vector-instructions (using the array-section notation) and the possibility to in-
dicate that all the iterations of a DO-loop can be executed in parallel (using the
construction DOALL). So the prototype compiler is a so-called source to source
restructuring compiler, which translates a (serial) FORTRAN 77 dialect into
(parallel/vector) FORTRAN 90. Note the fact that if the set of user-defined
transformations is empty, the compiler only functions as a syntax converter
of a FORTRAN 77 dialect into (serial) FORTRAN 90 code. The conversion
into vector or parallel code must be explicitly defined using the transforma-
tion language. The general idea of the prototype compiler using user-defined
transformations can be presented as shown in the following picture:

User Defined
Transformations

'

@ Restructuring -
— . —(Fortran 90
Compiler

General Idea

Figure 1: Compiler

Because the prototype compiler is a source to source compiler, only the
front end of a traditional compiler for a dialect of FORTRAN 77 is necessary,
consisting of the phases lexical analysis, syntax analysis, and semantic analy-
sis. These three phases are followed by a data dependence analysis phase, in
which all the static data dependences of the program are computed. These
data dependences can be used in the following transformation phase in which
the user-defined transformation are applied to the FORTRAN 77 code, trans-
forming it into FORTRAN 90 code. Finally an unparsing phase writes the
resulting FORTRAN 90 code to a text file, so it can be used as input for a
FORTRAN 90 compiler. These different phases of the prototype compiler are
shown in the following picture.

First the lexical analysis phase and the syntax analysis phase (parsing) will
be discussed. After that, the semantic analysis phase, the data structure used
for storing the program after some initial transformations (constant folding
and the conversion of subscript expressions into normal form), and data depen-

dence analysis is discussed, preceded by some extensions on the existing theory
about data dependences. The transformation language of this prototype com-
piler will be introduced next, followed by the methods used to apply these
transformations on the code in the program data structure. The presentation
of the implementation of unparsing the code in memory into a FORTRAN 90
text file, is the next topic of discussion. Finally, the resulting FORTRAN 90
code of some FORTRAN 77 programs is presented to demonstrate and discuss
the performance of this prototype compiler, resulting in some conclusions and
issues for future research.

The prototype compiler is implemented in C, and the source code can be
found in the appendices.

1.1 Interactive Environment

The prototype compiler can be called from within the UNIX shell with the com-
mand f2f. An interactive environment is entered then, from which commands
can be given after the prompt ‘=>’ to read in programs, apply transformations,
etc. The available commands are listed when the command help is used. All
these commands and their meanings are explained in a quick reference manual
that can be found in appendix A, but most commands will also be presented
during the discussion about the implementation of the prototype compiler in
this article. In the same appendix the different system responses ! are given.
The implementation of this environment can be found in module env.c, listed
in appendix T.

Information about the program can be obtained by examining the symbol
table of a program or the assumed data dependences. During the transformation
phase, the fragments of a program that match on a user defined transformation
are presented to the user together with the result from applying the transfor-
mation. The user can decide then, if the transformation must be applied. The
compiler also offers the possibility of aborting the transformation phase so the
program obtained so far can be examined, together with its symbol table and
data dependences. This kind of interactive processing of programs has been
chosen to gain more insight in the behavior of this prototype compiler.

le.g. an error is generated when the user tries to read a non-existing file.

FORTRAN 77

|

| Lexical Analysis |

i

| Syntactical Analysis |

i

| Semantic Analysis |

i

| Data Dependence Analysis |

i

| Transformation Application |

i

| Unparsing |

|

FORTRAN 90

Figure 2: Phases of the Prototype

2 The Source Language: a FORTRAN 77 dialect

Because lexical analyzing and parsing standard FORTRAN 77 is a difficult task,
certainly if automatically generated lexical analyzers and parsers are used, and
because interprocedural data dependence analysis is not the topic of study
during the implementation of this prototype restructuring compiler, a certain
dialect of FORTRAN 77 will be defined as input language, which does not
support intrinsic or user-defined functions or subroutines, GOTO statements,
input and output statements and CHARACTER data, and which has different
lexical conventions than standard FORTRAN 77.

The lexical conventions of the dialect are discussed first, together with the
presentation of the implementation of the lexical analyzer, followed by a dis-
cussion of the implementation of the syntactical analysis phase.

2.1 Lexical Analysis

The task of a lexical analyzer is to tokenize the input text. Strings that match
a certain pattern defined in the lexical analyzer, usually as a regular expres-
sion, are passed to the next phase (parsing) as tokens. These matching strings
will be referred to as the lexemes of a certain token. The following constructs
will be represented by one particular token: every keyword and every opera-
tor, identifiers, integer constants, real constants, labels and every punctuation
symbol. To avoid a certain shift-reduce conflict 2 on having seen a single label
(integer constant), in fact, a label and its associated CONTINUE statement are
represented as one single token LCONTINUE. Because in FORTRAN 77 every
statement must begin at a new line, a newline separating two statements is
also defined as a punctuation symbol with its own token (it cannot simply be
ignored as is the case in most programming languages). The compound opera-
tors are the arithmetic exponentiation operator ‘**’, the logical operators (e.g.
.NEQV.), and the relational operators (e.g. .NE.).

The keywords CONTINUE, DO, ELSE, END, ENDIF, IF, INTEGER, LOGICAL,
PARAMETER, PROGRAM, REAL, STOP, and THEN are reserved and can not be used as
user-defined identifiers. User-defined identifiers must always begin with a letter
possibly followed by a sequence of letters or digits. The special characters ‘x’,
P 0L, 40 0 4 and ‘= can not be used in identifiers. Ounly the
first six characters of identifiers are used (so the identifiers LONGID and LONGID2
will be seen as the same identifier). Both uppercase and lowercase letters may
be used, although the keywords must be spelled in a consequent manner (so
both END and end are allowed, but End will be seen as an user-defined identi-
fier. Note that since the lexical analyzer is lower and upper case distinct, the
identifiers I and i are seen as different identifiers. No spaces or tabs may ap-
pear inside an identifier or keyword. An exception forms the keyword END IF,
included in the definition, since it is used very often. Note the difference with
standard FORTRAN 77, in which all spaces and tabs are ignored first during
a so-called scanning phase, before the actual lexical analysis is done. Spaces
or tabs between different constructs are allowed and ignored, but although this

2This topic is disussed in more detail in subsection 2.2.

10

means that spaces and tabs are not really part of the language, keywords, iden-
tifiers, labels and operators must be separated in an unambiguous way. So,
D010I=1,10 will generate an error, because the identifier DO101I is recognized,
but IF(I.EQ.3)A=5 is a legal statement, because the characters ‘(’, ©)’, *.” and
‘=" can never be part of an identifier. In this fashion, it is not necessary to
scan the text ahead to determine if an assignment statement D010I=1.10 or
a DO-loop D010I=1,10 is encountered. Empty lines between statements are
allowed, so the newline on such lines is not passed to the parser as a statement
separator, but simply ignored.

Labels must appear in the first 5 columns, and no tabs before a label are
allowed, because the lexical analyzer explicitly searches for the beginning of
a line, followed by a maximum of 4 spaces and digits in sequence up to and
including the 5** column. Every line that starts with a ‘C’, ‘c’ or ‘«’ character
is treated as a comment line and is therefore ignored. A continuation is indi-
cated by any character in the sixth column, not preceded by a label, tab or
anything else than 5 spaces. The allowed number of continuations in sequence
is unlimited. Note that the newline before a continuation must not be seen
as a statement separating newline, but must be ignored. Because comment
lines or blank lines can appear between that newline and the continuation, as
the next example demonstrates, the lexical analyzer must scan ahead on the
input, before deciding if a statement separating newline must be passed to the
parser, or if that newline must be ignored.

R=R + 200 +
C This is a comment line before a continuation

C and this is a second comment line after a blank line
+ 200 * 10

So, a newline before a continuation matches the following regular expression,
\n/ ({comment}|{emptyline})*{continuation},

where {comment}, {emptyline} and {continuation} are the regular expres-
sions for respectively comments, blank lines, and a continuation. The regular
expression 7.e.1/r.e.o matches only on a string matching on r.e.; if it is fol-
lowed by a string that matches r.e.o, without actually scanning that second
string. The reason that the comments and blank lines between the newline
and the continuation are not scanned and ignored too during the look ahead
phase, is that the number of these continuations must be known to the lexical
analyzer, to administrate the current line number (see below), and that in case
that no continuation follows after the (incomplete) expression R = R + 200 +,
the syntax error must be reported to be at that line. Since it is not possible
to administrate the number of times a regular expression r.e. is matched in a
regular expression of the form (r.e.)*, it is necessary to scan the input text
ahead, before a decision can be taken, which is a rather expensive operation.
Lines without a label can start at any position in this dialect, although it is
wise to follow the same convention as in standard FORTRAN 77. Text after the

11

72th column is not ignored, although the unparsing phase that will be discussed
in section 9, will use a continuation before a line exceeds the 72th column, in
order to enable the user to present the resulting FORTRAN 90 code to another
compiler.

Constants of type REAL are recognized as strings that match the following
regular expression, where {digit} is the regular expression for a single digit.

{digit}+\.{digit}*x(("E"|"e") ("+"|"=-")7{digit}+)7

So both scientific and the decimal point notation are allowed. Any sequence of
digits without a decimal point or exponentiation operator are seen as constants
of type INTEGER.

The lexical analyzer has been generated using the LEX-tool. Whenever a
pattern described using a regular expression has been recognized, an action
defined in C will be executed. For most patterns this action is to return the
appropriate token to the parser. For some patterns, however, some extra or
different actions must be specified. Whenever a comment, a blank line, or a
newline before a continuation appears on the input, only the variable f_line
must be increased, which keeps track of the current line number in the FOR-
TRAN 77 source file. This variable can be used if a warning or an error is
generated by the parser, to inform the user where in the program that error or
warning occurred.

If a single newline separating two statements has been scanned, the only
action executed is to return the token for a newline. The current line number
f_line must be increased in the code of the parser itself, because if this increas-
ing was done by the lexical analyzer (as is the case for comments, empty lines
and newlines before continuations), the next line number would be reported
in cases where the error is detected on seeing a statement separating newline,
where it is not expected, as in the following example.

PARAMETER (N = 100

The missing ‘)’ can only be detected if the newline is passed to the parser.
Since associated actions in the lexical analyzer have already been executed
before passing tokens to the parser, the next line number would have been
used in the resulting error message. To prevent this wrong behavior, the parser
increases the line number if the newline is expected. Therefore, the additional
rule newline — ‘\n’ is necessary, with the increment of the line number as
associated action. Every occurrence of a single ‘\n’ in the grammar rules of
the parser, must be substituted with the non-terminal newline.

Whenever a constant of type INTEGER or REAL has been recognized on
the input, an attribute associated with the token (terminal) must be set to the
representation of the type of that constant. An auxiliary variable currentval is
set to the value of that constant (because different types of constant are possible,
the variable currentval is implemented as a union in C), using the sscanf 3
function of C to assign the correctly typed value to the variable currentval.

3This function can also handle constants in scientific notation.

12

Note that this variable just acts as an extra attribute of constant terminals, and
the parser will use this value only in the rules using these constant terminals.

In order to be able to store information about variables (e.g. type and
dimension) a symbol table must be maintained. This symbol table is a data
structure containing all the information needed by the compiler and must be
visible to all different compilation phases. It has an entry for every variable
used in the program. Because no limitations on the number of variables used in
a program exists, the symbol table is implemented using the technique of dy-
namic memory allocation. Whenever more entries than allocated at a particular
moment are needed, more memory is allocated at run-time. By doing so the
only limitation on the number of variables that may be used in a program, re-
sults from global memory constraints. The functions needed for (re)allocating
memory for the symbol table can be found in the module symbol.c which is
described in the section about the symbol table and is listed in appendix J.

The task of the lexical analyzer regarding symbol table management is to
create new entries for every new identifier in the program text. So, if an iden-
tifier has been recognized by the lexical analyzer, a function from the module
symbol.c is called, in which the symbol table is scanned to determine if the
lexeme (matching string) has been used before. If this is not the case, a new
entry is created in the symbol table in which the lexeme will be stored. The
attribute associated with the token of an identifier is set to the entry in the
symbol table in both cases, before that token is passed to the parser.

If a character is scanned, that is no element of the standard FORTRAN 77
character set, the character itself is returned to the parser as a token (the
representation of every token chosen by the tool used to generate the parser,
does not interfere with the representation of characters, so this can be done
without causing any problems). This is done to prevent the code generated by
the LEX-tool from dumping that character to standard output (which is done
whenever a string does not match any pattern). In that fashion the error can
be detected and handled in the parser.

The LEX definitions can be found in the module fscanner.l, which is listed
in appendix G.

2.2 Syntax Analysis

The parsing of the program is done according to the context-free grammar of a
FORTRAN 77 dialect shown in the following picture:

13

program
program _list

specification

par_list

par

defvar_list

defvar

subscript_list

subscript

stmt_list

!

Lo— L ——— L — |

_la._la.

u.__lu._lu._l

PROGRAM ID newline program list END newline
specification newline program list
stmtlist

PARAMETER ‘(’ par_list ‘)’
INTEGER defvar_list

REAL defvar_list

LOGICAL defvar_list

par ‘,” par_list
par

ID ‘=" expr

defvar ‘,” defvar_list
defvar

1D
ID ¢(’ subscriptlist)’

subscript ,” subscript_list
subscript

expr ‘:’ expr

expr
LABEL stmt newline stmt_list

stmt newline stmt_list
€

14

stmt

singlestmt

internlab

var

scalarvar
arrayvar

expr_list

expr

_l . _l - -

la.

la.

I N ———————————. l [l .

DO internlab scalarvar ‘=’ expr ‘,” expr newline
stmt_list LCONTINUE

DO internlab scalarvar ‘=’ expr ‘,” expr ‘,” expr newline
stmt_list LCONTINUE

IF *(’ expr ‘)’ singlestmt

IF ‘(" expr ‘)’ THEN newline stmt_list ENDIF

ELSE IF ‘(" expr ‘)’ THEN

ELSE

singlestmt

STOP

var ‘=’ expr
NUM_INT

scalarvar
arrayvar

1D
ID ¢(’ exprlist ‘)’

expr ‘.’ expr_list
expr

expr ‘4’ expr
expr ‘-’ expr
expr ‘*’ expr
expr ‘/’ expr
expr EXP expr
expr EQ expr
expr NE expr
expr GE expr
expr GT expr
expr LE expr
expr LT expr
expr EQV expr
expr NEQV expr
expr AND expr
expr OR expr
NOT expr

‘(" expr ‘)’

-7 expr

var

constant

15

constant — NUM_REAL
| NUMINT
| NUM_BOOL

newline — ‘\n’

The parser is generated using the YACC-tool. The YACC definitions can be
found in the module fparser.y which is listed in appendix H. Because it must be
possible to compile very large programs, the run-time memory allocation mode
for the resulting parser is set by defining the flag _RUNTIMEYY MAXDFEPTH.

Associated with every grammar rule in YACC, pieces of C-code can be
defined that can be used for checking the semantics of a program, and building
a program data structure. So, the tasks that must be performed after the lexical
analysis phase, parsing, checking the semantics and building the program data
structure for the program, are in fact executed in an interleaved way.

Actions that occur at the end of a grammar rule are executed when the
reduce action of that rule in the resulting parser is performed, that is whenever
that rule has been recognized. Actions occurring within grammar rules are
executed whenever they are encountered during the parsing phase. Note that
these actions are reduced as if they were grammar rules that yield the empty
string, so in referencing attribute values using the YACC-method of $i, where
i indicates the number of the right hand side (non-)terminal, they cannot be
ignored. All these associated actions and their different tasks will be discussed
in the following sections.

The function yyerror is called with a string containing an error message
whenever the routines generated by YACC detect an error, to enable YACC-
users to prompt appropriate error messages. In this case the line number in
the FORTRAN file under consideration and the error-message are printed. An
error flag is also set to enable the function that calls the YACC-generated
routines, to detect that an error has occurred. If such an error is generated
during parsing, the parsing phase stops immediately. The semantic errors in
the source file detected during parsing, or warnings generated (possibly caused
by some inaccuracy in the coding of the program) are reported using some other
functions, but will not lead to the termination of the parsing phase in order to
report more errors or warnings about a program in a single pass.

First the differences between standard FORTRAN 77 and the dialect ac-
cepted by the prototype compiler are discussed. Note the fact that every loop
must be closed with a CONTINUE statement (the test if the label has the correct
value is done during the semantic checking phase). So the following program is
incorrect, although it is correct in standard FORTRAN 77:

DO 10 I =

1, 10
10 A(I) = 20.0

16

Also note that a single CONTINUE statement with a label, that does not close a
DO-loop 4 is not allowed.

Now it is clear, why a label and a corresponding CONTINUE must be repre-
sented as one token. If separate tokens for the label and the keyword CONTINUE
are passed to the parser, the parser can not decide on having seen the token for
a label only, if a new statement, belonging to the loop body follows on input, or
a closing CONTINUE statement. This is caused by the fact that YACC generates
parsers for LALR(1) grammars, so only one token is used as lookahead.

Subroutines, user-defined functions, and intrinsic functions are not sup-
ported in this prototype. Therefore, subroutine calls are not allowed (CALL
is not recognized as a keyword) and function calls are parsed as if they were ar-
ray references (probably generating errors, if the number of actual parameters
does not correspond with the declared or assumed dimension of the variable
name used in the function call).

The precedence and associativity of the operators must be defined, in order
to enable YACC to create the correct parser. Left associative are the ‘.OR.’,
“AND., ‘4’ ‘=’ ‘«’ and ¢/’ operators. Right associative operators are the ‘xx’
and the unary minus. The logical and relative operators in FORTRAN 77 may
not associate with themselves. The precedence between the operators is defined
in the following order, indicated by < (the operators grouped together have the
same precedence).

.EQV., .NEQV.
<
.OR.
<
.AND.
<
.NOT.
<
.EQ., .NE., .GE., .GT., .LE., .LT.
<
+, —, %, [<, k%
<
(unary) —

During the unparsing phase of the program it is explicitly stated how the
operators have been parsed using bracket notation. So the assignment state-
ment R = R + 10 * S will be listed in the resulting FORTRAN 90 program (if
it has not been transformed by some transformation, naturally) as the state-
ment R = (R + (10 * 8)), in which the expression at the right-hand-side has
been annotated with brackets.

Some (non)terminals have an attribute of type int associated with them.
This attribute contains the integer representation of the type for the nonter-
minals expr and simple_expr. For internlab and the terminals LABEL and

4This construction is sometimes used to indicate that a label may be branched to. Since
GOTOs are not allowed in the dialect, there is no need for this construction.

17

LCONTINUE, the attribute holds the integer value of the corresponding label.
For the terminals indicating a constant value, NUM_INT, NUM REAL, NUM_BOOL
the attribute contains the representation of the type of the constant. The at-
tribute of the terminal var holds the entry in the symboltable of the associated
variable. The attribute of the non-terminal expr_list holds a merged type, that
will be introduced in section 3 on semantic analysis.

2.3 An Example of Syntax Analysis

The following simple example illustrates how a syntax error is reported when
the following program is parsed by the compiler.

PROGRAM DOIT

INTEGER I
DO 10 T =1, 10
STOP

END

I =200

The compiler reports a syntax error when this program is read using the com-
mand readprg within the interactive environment. This is caused by the fact
that the DO-loop has not been closed using a CONTINUE statement before the
end of the program, which is detected when the token for END, is passed to the
parser.

=> readprg doit.f
PROGRAM DOIT
**% syntax error in FORTRAN file: line <7>

Terminated

The parsing phase is terminated immediately after detecting the error, so the
(illegal) assignment statement after the keyword END will not be reported to
the user.

18

3 Semantic Analysis

As stated before, checking the semantics of the FORTRAN 77 dialect is done
while the program is being parsed. Whenever certain grammar rules have been
(partially) recognized, certain associated actions are executed. In this section
the actions that check the semantics are discussed. It is clear that only static
checking can be done, since no executable code is generated by this compiler,
in which dynamic checks could have been inserted.

Since the compiler must check if the source program under consideration
follows the semantic conventions of the language used, it is necessary to ex-
actly define these conventions in advance. Therefore, in the following sections
the conventions are given first before the implementation of different kinds of
semantic checks are discussed.

3.1 Type Checking

The types REAL, INTEGER and LOGICAL are supported by the FORTRAN 77
dialect of the prototype compiler. Because no input or output statements can be
used in this dialect, the use of CHARACTER types has not been implemented.

In standard FORTRAN 77 the type of a (sub-)expression is determined
using certain typing rules. The same rules have been chosen to hold for the
dialect language. Every constant and variable has a type. Either the type of a
variable is given explicitly in a type declaration statement, or it is determined
according the implicit data typing rules of FORTRAN 77. These rules state
that all variables starting with the letters I through N are considered to be
of type INTEGER, and that all other variables are considered to be of type
REAL.

The following tables show the resulting type of a (sub-)expression for ev-
ery operator of FORTRAN 77 when that operator is applied to operand(s) of
particular types. The fact that the tables of binary operators are symmetric,
reflects the fact that the resulting type does not alter if the types of the left-
and right-operand are interchanged.

The arithmetic operators in FORTRAN 77 are the ‘«’, ¢/, ‘4’ ‘=’ and the
“xx’. The typing rules of these operators are shown in the following table. Note
that the expression 3 / 4 is of type INTEGER, according to the FORTRAN 77
rules. So the resulting value is 0 (instead of 0.75).

| INTEGER | REAL | LOGICAL
INTEGER | INTEGER | REAL | INTEGER
REAL REAL | REAL | REAL
LOGICAL | INTEGER | REAL | INTEGER

Arithmetic Operators

The relational operators are .EQ., .NE., .GE., .GT., .LE., and .LT.. The
resulting value, after applying these operators, is always of type LOGICAL, so
it is independent of the type of its operands, which is stated in the next table.

19

| INTEGER | REAL | LOGICAL
INTEGER | LOGICAL | LOGICAL | LOGICAL
REAL LOGICAL | LOGICAL | LOGICAL
LOGICAL | LOGICAL | LOGICAL | LOGICAL
Relational Operators

Logical binary operators are the .EQV., .NEQV., .OR., and .AND., and can-
not be applied to operands of type REAL. So whenever these operators have
REAL typed operands, an error must be generated. If one of the operands is
of type INTEGER, the type of the resulting expression is also INTEGER. In
that case, a specific logical operation on the binary representation of the integer
is executed, resulting in an expression of type INTEGER. This logical opera-
tion will be discussed in section 4.3 where the data structure of expressions is
discussed. The typing rules for binary logical operators are summarized in the
next table.

| INTEGER | REAL | LOGICAL
INTEGER | INTEGER | not allowed | INTEGER
REAL not allowed | not allowed | not allowed
LOGICAL | INTEGER | not allowed | LOGICAL
Binary Logical Operators

One unary logical operator is available in FORTRAN 77: .NOT.. This
operator cannot be applied on an operand of type REAL. When it is applied to
a operand of type INTEGER, a logical operation to the binary representation
of the integer is executed, resulting in an expression of type INTEGER, see also
section 4.3.

INTEGER INTEGER
REAL not allowed

LOGICAL LOGICAL
Unary Logical Operators

The only unary arithmetic operator, the unary ‘—’ results in an expression
of the same type as the type of the operand. So, even when it is applied on an
expression of type LOGICAL the resulting expression is also of type LOGICAL.

‘ -
INTEGER INTEGER
REAL REAL
LOGICAL LOGICAL (!)
Unary Arithmetic operator

Now the actions for type checking, associated with the grammar rules can
be presented. The implementation of most of the following functions can be
found in module fsup.c, listed in appendix I.

If a declaration statement has been partially parsed (on encountering one of
the keywords INTEGER, REAL or LOGICAL before any executable statements

20

has been seen) a variable currenttype is set to the representation of the type
introduced. By doing so, the type of every identifier that is parsed afterwards
in that declaration statement, can be found by examining this variable. The
dimension for array variables can be determined by counting the number of fol-
lowing subscript ranges in the declaration, so it is known once all the subscript
range definitions of this variable have been parsed. Naturally, the dimension
of scalar (or simple) variables is 0. Every subscript range may be a single ex-
pression of type INTEGER or an expression of the form Minval : Maxval, in
which Minval and Maxval are expressions of type INTEGER, indicating the al-
lowed minimum and maximum value of subscript expressions of the associated
dimension. If only one expression with value N of type INTEGER and value is
given, the lower bound is assumed to be 1, so the allowed subscript range will
be 1 : N. It must be possible to evaluate these expressions at compile-time. If
this is not possible, a warning is generated (indicating that the lower- or the
upper bound cannot be computed) and the corresponding value is assumed to
be 0, the evaluated value is recorded otherwise. If the lower bound is greater
than the upper bound, an error is generated. So, for example, the declaration
REAL A(R), where R is a non-parameter variable (so its value is undefined at
compile-time), will result in the generation of a warning reporting the fact that
the upper bound cannot be computed, followed by an error message that the
lower bound (assumed to be 1 in this case) is greater than the upper bound
(assumed to be 0). If the expressions in the subscript ranges are not of type
INTEGER, a warning is generated and the values are converted to INTEGER
typed values. Because most compilers for standard FORTRAN 77 allow other
typed expressions as well (without any complaints to the user) no error will be
generated. However, because type conversion occurs in that situation, and the
language definition states that only expressions of type INTEGER are allowed,
a warning seems appropriate. If the dimension exceeds 7 an error is generated,
because standard FORTRAN 77 only allows multidimensional arrays up to 7
dimensions. Subscript ranges belonging to one array variable are linked into a
single list, so all these subscript ranges can be represented by one single pointer.
Further memory for storing subscript ranges can be used more efficiently, since
memory is allocated dynamically instead of statically allocating the space re-
quired for storing the maximum allowed number of subscript ranges.

The type, dimension and the subscript range list of a variable are stored in
the symbol table using functions of module symbol.c, if that variable has not
been declared before. If the variable has been declared earlier in the program,
and the type and dimension found in the symbol table are the same as those
recently seen, only a warning is generated. In that case the new subscript
ranges will be stored in the symbol table, so they overwrite ® the old subscript
ranges without checking if the bounds for every dimension are identical to the
old bounds (following the standard FORTRAN 77 convention). But, if the type
or the dimension in the recent declaration is different from older declarations,
an error is generated.

If a PARAMETER statement has been parsed, every following parameter

5The old subscript range list, stored in the symbol table, must be deleted from memory.

21

definition in the parameter list is processed to store the associated value of
the variable in the symbol table. If the variable has been declared as an array
before, an error is generated, since it is not allowed to use array variables in
PARAMETER statements. The variable is marked in the symbol table as a
parameter otherwise, by setting its dimension to -1 (since only scalar variables
may be parameters, this will not lead to any ambiguity). If the variable has not
been declared before, its type is determined and recorded in the symbol table
according to the implicit data typing rules of FORTRAN 77, and a warning
reports that type to the user. The expression associated with this variable
is evaluated (if that cannot be done at compile-time, a warning reports this
fact, and the value is assumed to be 0, 0.0, or .FALSE. for expressions of
type ¢ INTEGER, REAL and LOGICAL respectively). The resulting value
is also stored in the symbol table, in order to be able to use this value in
every following occurrence of the parameter variable. If the type of the value
stored is not the same as the type of the variable, type conversion is applied
first, before the value is stored, and a warning is generated. So if, e.g. the
parameter statement PARAMETER (R = I) appears in a program, where I is a
variable of type INTEGER, and R of type REAL, two warnings are generated.
One indicating the fact that the expression I cannot be evaluated (it is assumed
to be 0), and one that reports the type conversion of 0 to 0.0.

Because all the associated expressions have been stored in memory during
the creation of the program data structure, and their values can always be
found in the symbol table after they have been stored in the symbol table,
the intermediate data structures of these expressions can be deleted as soon as
these values are saved to free the memory occupied by these data structures.
It can be stated here that if the expression cannot be evaluated at compile-
time, this can be detected by the fact that the intermediate representation of
the expression is not the representation of a constant. This is because during
the building of the program data structure of expressions, a technique called
constant folding will be applied, see section 4.3. In fact, the same remarks
can be made for the expressions in the subscript ranges.

On encountering a grammar rule of the form expr — expr operand ezpr,
the type of the resulting expression (attribute on the left-hand-side nontermi-
nal) is determined using the rules given at the beginning of this section, and
passed to the synthesized attribute of the left-hand-side nonterminal expr. The
types of both right-hand-side expressions can be found in the attributes of the
corresponding nonterminals. A warning is generated if operands of type LOG-
ICAL are used in arithmetic or relational operators, or if expressions of type
INTEGER are used as operands of logical operators. An error is generated if
an expression of type REAL appears as operand of a logical operator. Most
compilers do not generate warnings at all in the first cases, but again, regarding
the language definition, the generation of warnings seems appropriate.

For the unary operator .NOT. the resulting type is also determined, possibly
leading to an error or warning messages, and stored in the attribute of the left-

SNote the fact that although the expression cannot be evaluated, its type can always be
determined at compile-time.

22

¢ 9

hand-side nonterminal. The unary operator ‘=’ can be handled very easily,
because the type of the operand can be passed immediately to the left-hand-
side nonterminal.

If a variable occurrence is encountered in an expression, it is tested whether
its dimension in that occurrence corresponds to its dimension stored in the
symbol table. If that is not the case, this is reported in an error message. The
dimension of the occurrence of that variable can be determined by counting
the number of following subscript expressions, and is 0 if the variable is used
as a scalar variable. The counting of the number of subscript expressions is
done using a stack of integers, because subscript expressions may also contain
subscripted variables, and the number of subscripts in those subscripted vari-
ables must be tested too. So, before the subscript expressions of a variable are
parsed, 0 is pushed on the stack. For every following subscript expression, the
top of the stack must be increased by one. After all the subscript expressions of
a variable has been parsed, the dimension of its current occurrence can be found
by simply popping the integer stack. In this fashion it is possible to account
for the dimension of array variables appearing in subscript expression too, since
the accounting is done at one level higher on the stack. The implementation of
the stack procedures can be found in module mem.c. This integer stack will be
used for other purposes as well. Again, the technique of dynamically allocating
memory for the integer stack has been chosen, since the number of indirect ref-
erences is theoretically unbounded (as in ACACA(C...A(1) ...))), where A is a
one dimensional array variable. It is also tested if all the subscript expression
are of type INTEGER. This is done by ‘merging’ the types of every subscript
list, which only returns type INTEGER if all the expressions in a subscript list
are of type INTEGER. This merged type is stored into the attribute of the non-
terminal expr_list. If this attribute does not contain the representation of the
type INTEGER, a warning is generated, since type conversion during run-time
will be performed in evaluating the value of the subscript expressions.

It is also tested if all constant subscript expressions (those that can be
evaluated at compile-time) are within the bounds of the ranges defined in the
array declaration. A warning is generated if this is not the case. No analysis
will be performed on non-constant subscript expressions.

If a variable has not been declared yet, it is assumed to be a scalar variable
of a type which is deduced using the implicit data typing rules of FORTRAN 77,
and a warning is generated together with this type. This information is stored
in the symbol table just as with a declaration statement, since it is unwanted to
repeat all the warnings with every following occurrence of this variable. Note
that no standard FORTRAN 77 compiler generates a warning in this case, but
doing so enables programmers, using this restructuring compiler, to check if the
assumed types of these variables, are as expected.

On parsing an assignment statement, it is tested if the types on the left-
and right-hand-side of that assignment are the same. A warning is generated
if these types are different. Again, this can be helpful in debugging a program.
For example, a classic error is to expect the assignment of 3 / 4 to a REAL
variable, to be 0.75. Because the right-hand-side is of type INTEGER in this
case, the potential wrong type conversion to 0 can be detected. It is also tested

23

if no parameter or loop-control variable is assigned to. Since this is illegal, an
error must be generated if this is the case. In order to be able to detect this case,
the environment containing current loop-control variables must be maintained.

On recognizing the header of a DO-loop, a test is performed that checks
if the loop index has not been used as a loop index of a surrounding DO-loop
too and if the index has not been defined as a parameter, resulting in an error
if it has. If the types of the loop index and the lower bound, upper bound
and possible stride expressions are not the same, a warning is generated. If no
explicit stride is given, the type INTEGER (for the implicit 1) is used for the
stride expression in this test. So a warning is given if the following fragment if
presented to the compiler:

REAL R
DO 10 R = 3.0, 4.0
10 CONTINUE

If the implicit stride (1) of this loop is changed into an explicit stride (1.0)
the warning disappears. If the bounds and the stride can be determined at
compile-time, it is checked if this loop will be executed during run-time. If this
is not the case (e.g. DO 10 I = 20, 10), a warning is generated.

On encountering logical-IF, general-IF or WHILE statements, the type of
the condition is tested to be LOGICAL. If it is not, an error is generated, since
it is not allowed in FORTRAN 77 to use other typed expressions as a condition.

3.2 Label Related Checks

When a label has been parsed, a check is performed if this label has not been
used before. If this is the case, the duplicate use of the label is reported in an
error message. In order to be able to detect this error, all the labels used before
must be stored. This is done using dynamically allocated memory. Since the
expected number of labels in a program written in this FORTRAN 77 dialect
is usually small (they are only useful in CONTINUE statements), it is more
memory efficient to initially allocate space for a few labels, and only allocate
more memory if required (since the bound on the number of different labels
possible in a program is 99999, statically allocating memory is in fact not very
practical).

Every DO-loop must be closed with a CONTINUE statement and an associ-
ated label, that is the same as in the DO-loop header. The first test is performed
by the syntax analyzer, but the second test is a semantic test. Therefore, on
encountering a DO-loop header, the label after the keyword DO is stacked. To
maintain the environment of current loop-control variables, which is also nec-
essary to perform the tests mentioned in the previous section, the symbol table
entry of the loop-control variable is stacked as well. Because the nesting depth
in most programs is limited, this (stack-)environment can be implemented using
a static array. If the nesting depth becomes greater than the allowed maximum

24

depth, an error is generated and the program terminates. The maximum nest-
ings depth is set to 25. If a CONTINUE statement has been parsed, a test is
performed whether the associated label of this CONTINUE statement is ex-
pected. An error is generated otherwise.

3.3 Flow of Control Checks

If a statement follows after a STOP statement, a warning must be generated to
inform the user that that statement cannot be reached. Because this can only be
detected during the building of the program data structure, the implementation
of this test is discussed in section 4.3.

Because ELSE or ELSE IF statements are parsed as ‘normal’ statements, it
is necessary to check if they only occur within general IF statements. Therefore,
it is recorded if a general IF header has been parsed by incrementing a variable
i fnest, which indicates the nesting depth of general IF statements. Whenever
an ELSE or ELSE IF statement has been parsed, the semantic analyzer checks
if i fnest > 0. Besides that, the occurrence of an ELSE statement is recorded
using the integer stack, to prevent other ELSE or ELSE IF statements from
occurring after this single ELSE.

3.4 Warnings and Errors

Whenever error or warning messages are reported, the current line number in
the program text is also given to enable the user to easily locate the problem.
In some cases, the name of a variable involved in an error or warning must also
be reported (e.g. - Warning: Duplicate declaration -> I (line 10)).
Because most of the warnings that can be generated by this prototype compiler
are non-standard, the generation of warnings is turned off by default. The
generation of warnings can be enabled by using the command warnings within
the shell and can be disabled again with the command nowarnings.

It is strongly advised to enable the generation of warnings during the phase
of developing or debugging a program until all the warnings generated have
been eliminated or are clearly understood.

3.5 An Example of Semantic Analysis

The warnings and errors that are generated when the following program is
presented to the prototype compiler, are discussed here to illustrate the features
presented earlier in this section.

PROGRAM TYPES

PARAMETER (N = 100, M = 200.0)
INTEGER I, J, I

REAL R, ACM), B(300.0), B
LOGICAL B2

PARAMETER (B2 = (.FALSE. .AND. 30))

25

bo10I =1, 2 *x N, - 1.0

ACI) =100
15 CONTINUE
IF (3) THEN
R =2.0
ELSE
R = 3.0
ELSE
R =4.0
ENDIF
STOP
15 R = A(201)
END

The warnings are a result of the fact that the variables N and M are not de-
clared before their use in the PARAMETER statement, the fact that the real
number 200.0 is used in the PARAMETER definition of M, the duplicate, but
compatible declaration of I, the use of an INTEGER expression in one of the
operands of the logical operator .AND. which also results in the warning about
an INTEGER expression in the PARAMETER statement defining B2, the use
of an expression of type REAL in the stride of the DO-loop, the assignment
of an INTEGER typed value to A, the use of the subscript 201 in the array
A that has only 200 elements, and the fact that the last statement cannot be
reached. The error messages are generated because the CONTINUE statement
at line 11 does not have the correct label (it has label 15 while label 10 is ex-
pected), because an integer is used as a condition at line 13, an ELSE follows
after another ELSE at line 17, and because label 15 is set again at line 22.

=> readprg errors.f

PROGRAM ERRORS
- Warning: Parameter not declared -> N (line 3)
type INTEGER assumed
- Warning: Parameter not declared -> M (line 3)
type INTEGER assumed
- Warning: Other type in value of Parameter -> M (line 3)
- Warning: Duplicate declaration -> I (line 4)
- Warning: Subscripts are not of type INTEGER in declaration (line 5)
- Error: Variable redeclared -> B (line 5)
- Warning: INTEGER operand in logical operator (line 7)
- Warning: Other type in value of Parameter -> B2 (line 7)
- Warning: Different types in DO-loop (line 9)
- Warning: Other type in assignment to -> A (line 10)
- Error: Incorrect CONTINUE label (line 11)
- Warning: DO-loop will not be executed (line 11)

26

Error: Condition is not of type LOGICAL (line 13)
Error: ELSE(IF) after ELSE (line 17)
- Error: Label has already been set (line 22)

- Warning: Subscript out of bound (line 22)
- Warning: Statement after STOP cannot be reached (line 24)

Terminated

Note that all semantic errors in this program can be detected and reported
during a single pass, which saves time while debugging a program.

27

4 Building the Program Data Structure

During the parsing phase, the program and program related information must
be stored into memory. The data structures used and the methods to build
these are presented in this section.

Section 4.1 discusses the symbol table, in which information about all vari-
ables used in the program is stored. The implementation of symbol table func-
tions can be found in module symbol.c, listed in appendix J. Sections 4.2 and
4.3 present the way in which the program itself is stored. The implementa-
tion of functions used to create the program data structure of programs can
be found in module struct.c. This section discusses the implementation issues
in more detail than the previous sections did, since it is also intended to be a
documentation about the language dependent choices made, and these are less
straightforward than those made while implementing the previous phases.

All the type information about the program data structure and the symbol
table can be found in module prgtype.h, which is listed in appendix F, and
which must be included in those modules.

4.1 The Symbol Table

For every identifier a new entry is created in the symbol table. The attributes
that belong to every entry are enumerated below.

e f_symbol[i]: This attribute is an integer index in a dynamic array of
characters. In this array the characters of the name of every identifier
(lexeme) are stored, using the next available space in that array. Every
identifier is terminated with a ‘\0’ character, so that it can be printed to
output as a string. In this fashion no memory is wasted for allocating the
maximum allowed number of characters (6) per entry, because the strings
of successive identifiers are stored consecutively. If the size of the dynamic
array of characters is not sufficient, more memory is (re)allocated. This
technique is illustrated in the following picture, in which the symbol table
is shown after the identifiers I, LONGID, and RE are stored consecutively.

The reason an integer index has been chosen instead of a pointer to a
(character) memory position, is that if more character memory is reallo-
cated, the absolute positions in memory of the characters already stored,
may change. There is no need for changing these pointers, if the relative
addressing technique is used.

e f_dim[i]: This attribute contains an integer that holds the dimension of
the identifier. If it is a scalar variable this dimension is 0. To indicate
that the identifier is used as a (scalar) parameter, this integer is set to -1.
The value of the parameter can be found in another attribute.

e f_type[i]: This attribute holds an integer containing the representation of
the type of the identifier. The represented type can be INTEGER, REAL
or LOGICAL.

28

e

II\OILONGID\OIRE\OI

Figure 3: Storing Lexemes in the Symbol Table

e f_walli]: This attribute contains the value of the identifier if it is used as
a parameter. This value is always of the type given in the entry f_type[i],
since type conversion has been applied on values of a different type in
parameter definitions, as is stated in the previous section. This attribute
is implemented as a union which can contain values of the three different

types.

e f_dimlist[i]: This attribute is a pointer to a list containing the allowed
subscript ranges per dimension. Because a list structure is used instead of
allocating memory for the maximum allowed number of subscript ranges
(7) in advance, a more efficient use of memory results. This list can be
linked together after the array declaration has been parsed. The bounds of
subscript range are always values of type INTEGER, since type conversion
has been applied on the expressions that are not of type INTEGER in
array declarations before storing these ranges.

Whenever during the parsing phase of a program more entries in the symbol
table are necessary than is allocated initially, more memory will be allocated.
So, the number of identifiers that can be stored in the symbol table is only
bound by the run-time available memory of the machine on which the compiler
is currently executed.

After the program has been correctly parsed and no semantic errors have
been detected, the information stored in the symbol table is written in a read-
able format into the text file program.sym. The user can examine this informa-
tion with the command symtb, which shows this file using the UNIX command

29

less.

The modules using the symbol table can insert new identifiers, update and
retrieve information stored in the symbol table by using interface functions only.
So, the implementation of the symbol table is only known in module symbol.c.
The functions for allocation and maintenance of the symbol table memory are
also local to this module in order to hide the implementation issues from other
modules.

4.1.1 An Example of a Symbol Table

The following program contains declaration statements, parameter statements
and one assignment statement in which a variable occurs that has not been
declared.

PROGRAM SYMBOL

INTEGER I, J, K, N

REAL R

LOGICAL LO1, L02

PARAMETER (N = 100, K = 2.0 * 100)
PARAMETER (R = 50.0)

PARAMETER (LO1 = (.TRUE. .AND. .FALSE.))
REAL A(N), B(2 * N), C(300.0,20)

P=3.0

END

The resulting symbol table is shown below. The identifier SYMBOL is the only
identifier without a type, because it is only used as identifier in the program
header. So, the implicit data typing rules have not been applied. The values of
all the expressions in the parameter statements are computed and if necessary
converted to the right type. According to the implicit data typing rules, the
identifier 0 is of type REAL, and this information is stored in the symbol table.
The bounds of the subscript ranges can be arbitrary expression provided that
they can be evaluated at compile-time, and are computed and stored in the
symbol table, after possibly type conversion has been applied.

=> symtb

Symbol table:

Id Dim Type Value Bounds
SYMBOL - Undefined -

I Scalar INTEGER -

J Scalar INTEGER -

K Parameter INTEGER 200

30

N Parameter INTEGER 100

R Parameter REAL 50.0

LO01 Parameter LOGICAL .FALSE.

LO2 Scalar LOGICAL -

A 1 REAL - (1:100)

B 1 REAL - (1:200)

c 2 REAL - (1:300 1:20)
P Scalar REAL -

4.2 Declaration Statements

All the information contained in the declaration and parameter statements will
be stored in the symbol table. Since all the occurrences of parameter variables
in the rest of program will be replaced with its value found in the symbol table,
there is no need to store the parameter statement explicitly. The declaration
statements can be reproduced from the information found in the symbol table.
So neither declaration nor parameter statements need to be stored. Note that
since the symbol table will be used to generate declaration statements for the
resulting FORTRAN 90 code, variables which were defined implicitly in the
original program, will have an explicit declaration statement in the resulting
program. This generation of declaration statements will be discussed in sec-
tion 9, which covers the implementation of the unparsing phase of the program
in memory.

4.3 Executable Statements and Expressions

All executable statements must be stored in memory in order to be able to apply
data dependence analysis and transformations to the code. First the general
way of creating the data structure is presented. After that, the structures for
specific statements are discussed. Remember that the functions for creating the
data structure of a program are also executed during the parsing of a program.

The main data structure that is created for a program is a list of state-
ments. Every element of this statement list consists of a representation for one
particular statement and a pointer to the next statement in the program. This
structure is shown in the following picture.

During the parsing phase an expression stack and a statement stack are
maintained. The element of these stacks are pointers to the data structure
of respectively expressions and statements. Whenever an expression or an exe-
cutable statement has been parsed, its data structure is created and a pointer to
this structure is pushed on the stack. If these data structures are needed again
to build a bigger data structure from earlier created data structures which are
still on the stack (e.g. a statement list is created from the successive statements
in the program, the left-hand-side and right-hand-side expressions are needed
to build an assignment statement), they can be popped of the stack. When the
bigger data structure has been built, a pointer to it is pushed back on the stack.
In this fashion the total data structure can be built in an incremental way. The
only pointer on the statement stack after the parsing phase has terminated cor-

31

Representation
of the Statement
stored in this node

T

— — R >

Head

Program Data Structure

Figure 4: Main Data Structure

rectly, is the pointer to the first statement in the statement list, which is also
the first statement in the program. This pointer is saved in a variable (head)
which can be used as entry to the program data structure.

During the creation of a statement list from the separate statements, the
flow of control check, mentioned in section 3.3, can be executed. It is tested
if no statement appears after a STOP statement. The only exception on this
rule is, that an ELSE or ELSE IF ‘statement’ (remember that they are treated
as normal statements when building their data structure) may appear after
a STOP statement, since the flow of control can never enter more than one
branch of the same IF statement. Therefore, whenever other statements after
a STOP statement are detected, a warning is generated, and the following
statements are scanned and deleted from memory up to the first ELSE or ELSE
IF ‘statement’. This last statement and its following body are linked then to
the previous statement.

The expression stack is empty after a correct program has been parsed, since
all the expressions have been used in creating the symbol table 7 or executable
statements. Since the data structure of expressions is a part of the executable
statements data structure, this is discussed first.

Every expression is represented as a structure expr_node. The first field of
this structure hold the kind of expression that is represented in this particular
node (kind). The second field is a union v which can contain different attributes,
depending on the kind of expression represented. The attributes for every kind
of expression are discussed below.

4.3.1 Constants

The type and value of the constant are stored in the fields type and val. The
value is stored in a union field, which can contain one value of type INTEGER,

"Expressions are also used while building the symbol table, see section 3.1.

32

REAL or LOGICAL. Note that the type must be stored in order to be able to
retrieve the right type of value.

Figure 5: Constant Data Structure

4.3.2 Variables

The symbol table entry of the variable is stored in the field entry (so all infor-
mation stored in the symbol table can be obtained by using the functions of
module symbol.c) and a pointer to a subscript list is stored in the field dim_list.
These consecutive node of this subscript list contain a pointer to the correspond-
ing subscript expression of the variable (head), and a pointer to the rest of the
subscript list (tail). The use of a list instead of static memory, needs no more
explanation by now. The semantic analysis phase has already determined that
the number of following subscript expressions equals the dimension of that vari-
able. The pointer is set to NULL in case of a scalar variable. The subscript list
of array variables can be created by popping the correct number of subscript
expression from the expression stack (since they have already been parsed, they
can be found there) and linking them together. Together with a pointer to the
subscript expression used in the program, a pointer to the so-called normal form
of a subscript expression is stored (normezpr) in every node of the subscript
list. This normal form expresses a subscript expressions in terms of surrounding
loop-control variables (ag + a1i1 + ...anin, where the ig, 1 < k < n are loop-
control variables), and is necessary to simplify the data dependence analysis
phase. If this normal form cannot be computed (because the expression is too
complicated 8, or variables that are no loop-control variables are used in the
expression), this pointer is set to NULL. Whenever a user wants to see the
program in memory using the command showprg, every subscript expression
that can be transformed into normal form, is shown using angle-brackets (<

>) to inform the user about the knowledge that the compiler has about
that subscript expression. This enables him to rewrite subscript expressions
that are too complicated for the compiler, avoiding the possible assumption of
too many data dependences. Note that the rewriting of subscript expressions to
their normal form which will be used in data dependence analysis, may result in
subscript expressions in which the evaluation order may change. Since a special
test on REAL typed constants has been included (only if all REAL constants in
the subscript expression have an empty fractional part, the subscript expression

8If operators different from ‘+’, ‘—’, “«’ or the unary ‘—’ are applied on the loop-control

variable inside the subscript expression, the expression cannot be brought into normal form.

33

can be rewritten into normal form), and because the data dependence analysis
phase will take the use of loop-control variables that are not of type INTEGER
into account, this will not result in the assumption of wrong data dependences.
The following demonstration of the conversion into normal form illustrates the
power of this rewriting, since the resulting subscript expression are more suit-
able for automatic analysis. The assignment labels that appear in the resulting
program are also given in the original fragment.

PROGRAM NORMAL
INTEGER I, J
REAL A(10,10), R

S1: A(R,2) = 100.0

DO21I=1, 10

D01 J=1, 10
S2: A(I,J) = A(T + 0.5,2.0%J + 1.0)
S3: A*I + 3*xJ + 2 + 1 - 2,-J + 6+ 10xI+ 3*xI + J-2) = 10.0
1 CONTINUE
CONTINUE
END

The first subscript expression of assignment statement S; cannot be converted
into normal form, since it is not used as an loop index. The use of a REAL
constant with a non-empty fractional part (0.5) results in the inability to rewrite
the first subscript expression in the reference to A on the right-hand-side of the
assignment So. The REAL constants in the second subscript do not prohibit
the conversion into normal form, since they have an empty fractional part.
The complicated expressions appearing in S3 of the original program can be
simplified to the normal forms shown below.

S1: A(R, <2>) = 100.0
L1: DO I =1, 10, 1
L2: DO J =1, 10, 1
S2: A(<I> , <J>) = A((I + 0.500000), <2*xJ+1>)
S3: A(<3*I+3*J> , <13*xI+4>) = 10.0
ENDDO
ENDDO

The original subscript expressions, however, will be used again in generating
the resulting FORTRAN 90 program, so the normal forms will only be used in
the data dependence analysis. The following picture illustrates the storage of a
variable.

If the variable has been defined as a parameter, the data structure for a con-
stant with value as found in the symbol table is created instead. The direct use
of the associated constant instead of the variable, is called constant folding.

After a variable has been parsed, its symbol table entry can be found in
the attribute of the nonterminal var. All other information can be retrieved

34

Symbol Table Entry
Head

Normexpr

Dim_1list

< Rest of Subscript list >

Figure 6: Variable Data Structure

from the symbol table, using that entry. The representation is created and the
pointer to this data structure is pushed on the expression stack.

4.3.3 Operators

Pointers to the argument expression(s) of operands are stored in the fields argl
and arg2. Both pointers are needed in the case of binary operators, but for
an unary operator, only one pointer is needed, so the other pointer is set to
NULL. The kind of operator represented is explicitly stored in the kind field of
the data structure for this expression.

If an expression is encountered during the creation of the data structure,
which can be evaluated at compile-time in the same way as it would be eval-
uated at run-time, the representation of the resulting constant is created in-
stead ?. This is a more general form of constant folding. So, the expres-
sion 3.0 * 2.0 + A can be transformed into 6.0 + A, A + 2.0 * 3.0 into
A + 6.0, but the expression 3.0 * A * 2.0 cannot be evaluated any further,
since the subexpression 3.0 * A will be evaluated first at run-time. Changing
the order in which subexpression are evaluated may change the semantics of a
program, as round-off error may accumulate differently in expressions of type
REAL. The same procedure is used for evaluating expressions of type INTE-
GER and LOGICAL. By incrementally evaluating expressions while building
the corresponding data structures, composite constant expressions are trans-
formed into the representation of the resulting constant value. The resulting
value will be converted to the type of the resulting expression first if required.

Most operations performed are straightforward but a few require some ex-
planation. Whenever the ‘/’ operator has a zero right operand (0, 0.0 or
.FALSE.) a division by zero error is generated. Whenever the .EQV., .NEQV.,
.AND., .OR., or .NOT. are applied resulting in an integer expression, the follow-
ing operations on the binary representation of both operands (01 and o03) are
applied respectively: (—1)~(01702), 01" 02, 01&02, 01|02, and (—1)~0; (in which

“Note that the representation of the operands must be deleted from memory.

35

=, |, and & are the operators for bitwise exclusive or, bitwise or, and bitwise
and respectively). If the operation cannot be applied on its operands (e.g.,
.AND. with operands of type REAL), an error has already been generated, so
the result does not need to be computed.

Because this technique is also applied on the expressions that appear in
PARAMETER statements, the compiler can easily determine if the associated
expressions can be evaluated at compile-time, since in that case a constant
expression is on top of the stack as a single parameter definition has been
parsed. The storage of an operator is illustrated in the following picture.

Figure 7: Operator Data Structure

Statements are stored in stmt_node structures. This structure contains a
field which indicates the type of statement stored in that particular structure
(kind), a pointer to the representation of the next statement in the program
(next) and a union u which can contain different attributes, depending on the
kind of statement stored.

All assignment statements, IF statements and DO-loops are numbered in
lexical order. Assignment statements are numbered as S; (¢ > 1), to enable
the referencing of particular assignment statements in the presentation of the
data dependences in that program '°. For the same reason, logical-IF and
general-IF statements are numbered as C; (¢ > 1) and DO-loops as L; (i >
1). This numbering of particular statements is shown when the program is
listed using the command showprg during a session, but naturally they do not
appear in the resulting FORTRAN 90 program text. In order to administrate
this numbering, three different variables are reset to zero before a program is
processed and are increased by one before stored in the data structure of the
particular statements. Whenever an assignment statement, an IF statement,
or a DO-loop has been parsed the corresponding counter is incremented. The
following fragment demonstrates the way in which the numbering is presented
to the user when the command showprg is given. Note that the assignment
statements inside the conditional statements have their own numbers S; and
S3.

Cl: IF (N .GT. 10) S1: N = 10
L1: o011 =1, N, 1

10A more detailed presentation of data dependences will be used than the presentation on
assignment statements only, see section 5.

36

S2: A(I) = B(I) + 10.0
C2: IF (I .GT. 5) S83: C(I) = C(I) + 1.0
ENDDO

4.3.4 DO-loops

The attributes of the data structure for DO-loops consist of a pointer to the
loop-control variable (index), three pointers to the lower, upper bound and
stride expressions (exprl, expr2 and expr3), a pointer to the data structure
(statement list) representing the body of this loop (body), and the number of
the loop (loopno). If no explicit stride is given, an integer constant 1 with
exprd pointing to it, is created. In this fashion, only DO-loops with explicit
strides appear in the data structure for DO-loops (and in the resulting pro-
gram). This decision has been made, to prevent the need for two different
patterns in the transformation language, which often results in many different
transformations . which all, in fact, describe the same transformation.

Because during data dependence analysis it must be possible to reach follow-
ing statements not in a loop body, from within that loop body, the statement
list representing the body of a loop does not end with a NULL pointer, but with
a special marker, called LINK_UP. The next field of this marker points to the
representation of its surrounding DO-loop. In this fashion statements after this
DO-loop can be reached by following the next pointer of the DO-loop pointed
to by the marker.

Whenever a DO-loop has been parsed, all the expressions necessary to create
its data structure can be found on the expression stack, and the representation
of its loop body can be found by popping the pointer on top of the statement
stack, since these data structures have already been created in the actions of
recently used grammar rules.

An extra field ext is used to indicate if it concerns a serial DO-loop or a par-
allel DOALL-loop. Since only serial DO-loops are allowed in the FORTRAN 77
dialect, this field is always set to the representation of serial loops and can only
be set to the representation of parallel loops during the transformation phase.
The data structure of a DO-loop is shown in the following picture.

4.3.5 Assignment Statements

The attributes of an assignment statement are l[hs and rhs, pointing to re-
spectively the left-hand-side expression (a variable) and the right-hand-side of
this assignment. A third field stmitnod contains the number of this assignment
statement. The two expressions needed to create this data structure can be
found on the expression stack, once an assignment statement has been parsed.
The data structure is illustrated in the following picture.

HConsider for example, a pattern with two DO-loops. If the pattern must specify if an
explicit stride is present, 4 patterns result.

37

Index

Exprl
o

ext Expr3
I:I e~ — LINKUP

-}

V Next

< Rest of Statement list >

Figure 8: DO-loop Data Structure

4.3.6 Logical-IF and General-IF Statements

The attributes of both the logical-IF and the general-If statements are a pointer
to the expression acting as condition (condition), a pointer to the data structure
(statement list) for the body of this IF statement (body), and the number of
its condition condno. The kind of IF statement stored (Logical-IF or General-
IF) is explicitly recorded in the kind field. The statement list representing the
body of IF statements is closed with a special LINKIF_UP marker for the same
reason mentioned before.

The associated condition can be found on the expression stack and a pointer
to the data structure of the body can be found on the statement stack, once an
IF statement has been parsed. If this condition can be evaluated at compile-
time, and is .TRUE. in the case of a logical-IF statement, only the associated
statement is stored in the program data structure, and a warning is generated
to report this form of constant folding to the user. If the value if . FALSE., the
whole logical-IF statement is stored, because otherwise no trace of the original
program structure is left behind.

Remember that the ELSE and ELSE IF branches are only implicit in the
data structure, as the representations of ELSE and ELSE IF are stored as
‘normal’ statements between the other statements in the statement list of the
loop body. The data structure is presented in the following picture.

4.4 STOP statements

Since STOP statements do not have any attributes, they can be stored in a
node without any additional information.

38

Rhs
1

ez I

V Next

< Rest of Statement list >

Figure 9: Assignment Statement Data Structure

4.5 Memory Management

In module mem.c, the implementation of general memory management func-
tions can be found, together with the implementation of the routines for the
four different stacks (the integer stack, the expression pointers stack, the DO-
loop management stack and the statement pointers stack) and the functions
responsible for releasing 12 the memory occupied by the program data struc-
ture elements. If a syntax or semantic error is detected, a garbage collecting
function of this module can be called, which will release all the memory occu-
pied by all the (partial '3) data structures stored. When a new program is read,
the program in memory must be deleted first which is also done by functions
from module mem.c. This module is listed in appendix K.

4.6 Some examples

Although the listing of a program in memory does not show all the concepts
discussed in this section, it reflects the way in which a program has been stored.
Therefore the result of the command showprg is given below when the following
FORTRAN 77 program has been read.

PROGRAM INT

INTEGER I, N
PARAMETER (N = 200 + 100 * 2)

12Remember that during the creation of the symbol table, some intermediate data structures
can be deleted.

131f the parsing phase does not terminate normally, the partial data structures have not
been linked together yet.

39

Condition

\ e ELSE —_— s e e —_—
]

—

LINKIFUP

-}

V Next

< Rest of Statement list >

Figure 10: IF Statement Data Structure

REAL AN + 5), B(N + 10), R
R =10.0-5.0/ 5.0

DO 10 I =1, N+ 5
IF (.TRUE.) A(I) = 20.0 * 2.0 + R
B(I) = 10.0 + 10.0 + 10.0 + 10.0 * R + 5.0
10 CONTINUE

IF (.FALSE. .EQV. .FALSE.) THEN
R=3.0+6.0x* 2.0
STOP
R = 3.
R = 4.
ELSE
R=4.0/ 2.0+ 10
ENDIF

0
0

STOP

END

In the resulting program, the expressions have been partially evaluated, as
far as is allowed without changing the evaluation order, which would occur
during run-time. The implicit stride of 1 is made explicit. The . TRUE. value
in the logical-IF statement has been used to eliminate the condition from the
statement, but has not been eliminated in the general-IF, because that would
require the elimination of all other branches. The statements in the first branch
of the general-IF that appear after STOP have been deleted. Why the layout of
some statements is different from the one in the original program, is explained
in section 9.

40

=> readprg int.f

PROGRAM INT
- Warning: IF (.TRUE.) ignored (line 10)
- Warning: statement after STOP cannot be reached (line 21)

Computing Data Dependences
=> showprg
PROGRAM INT

INTEGER I
REAL A(1:405)
REAL B(1:410)
REAL R

S1: R = 9.000000
Li: DO I =1, 405, 1
S2: A(<I>) = (40.000000 + R)
83: B(<I>) = ((30.000000 + (10.000000 * R)) + 5.000000)
ENDDO
C2: IF (.TRUE.) THEN
S4: R = 15.000000
STOP
ELSE
S5: R = 12.000000
END IF
STOP

END

41

5 Data Dependences

Information of data dependences reflecting the flow of data in a specific pro-
gram, is essential to the restructuring compiler. Without this information it is
not possible to determine if a certain transformation preserves the semantics
of the original fragment. Before the computation of data dependences is dis-
cussed, the basic concepts of data dependences are summarized, together with
some minor extensions to the existing theory, in order to be able to express
more than only data dependences between assignment statements, and to de-
fine some concepts more precisely. Further discussion of data dependences can
be found in [Pol88], [Bik91], [ZC90] and [Wol89].

Two kinds of statements can be distinguished: scalar statements and indezed
statements. Indexed statements are statements that appear inside a loop body,
so they are under explicit control of a loop-control variable, or vector statements
which are under implicit control. The number of loops surrounding an indexed
statement is called the degree of that statement. The notation for an indexed
assignment statement of degree k is S;(Iy,...,Ix). A similar notation can be used
for IF statements and even for DO-loops inside other loops. The variable I;
indicates the j** loop-control variable. An instance of an indexed statement is
obtained by substituting every loop-control variable by the appropriate value.
In a simple loop for example, with one loop-control variable that runs from 1
to N, there are N instances of every (indexed) statement inside that loop. This
is illustrated in the next example.

Li: DO I =1, 3, 1
S1: A(I) = B(D)
Ci: IF (B(I) > 10)
ENDDO

In this example, S;(I) and C;(I) are indexed statements. S1(1), S1(2), and S;(3)
are the instances of the indexed assignment statement, indicating A(1) = B(1),
A(2) = B(2), and A(3) = B(3) respectively. In the following presentation of
some concepts, only assignment statements are considered. The same concepts,
however, can be defined on the other kind of statements.

For an indexed statement S; of degree k, with first instance S;(1,...,1) and
last instance S;(Ny,...,Ng), the number of different instances N is given in the
following formula.

Note the difference between an indexed statement and its instances. If the
loop-control variables of a particular indexed statement are known or do not
matter at that moment, S; can be used to refer to S;(I).

Scalar statements are statements that are not under explicit or implicit
control of a loop-control variable. Scalar statements can be considered to be
indexed statements of degree 0, so it can be stated that these statements only
have one instance.

42

The order of execution in a program is a relation defined on the instances of
statements. It reflects the order in which instances of statements are executed
during the sequential execution of the program. S;(: i) <0 Sm(j) indicates that
the instance of S; belonglng to iteration ¢ will be executed before the instance of
S belonglng to iteration j. The notation S;(7) <o Sm(J) is used if it is p0551ble
that S;(7) and S,,(j) are the same instances of one statement (1 = m and i = j).
So if S; and S,,, have the same degree k, S;(i1,...,ix) <o Sm (Jl, k) i (1,-1k)
< 1 (j1,....jk) holds. If these two vectors are the same (i = j holds), S; <o Sm
holds if S; precedes S, in the program (i < j). If these statements do not have
the same degree, only the loop-control variables in common are considered, so
the iteration vectors ¢ and j used in the comparison have the same dimension.
For example, the execution order between two scalar statements, in which S;
lexically precedes S;, (1 < m), is denoted by S; <o Sp,

The definitions of the set I N (all the variables that are read by an assign-
ment statement S, a conditional statement C or a DO-loop statement L) and
the set OUT (the variables that receive a value from an assignment statement
S or a DO-loop statement L), are trivially extended for instances of indexed
statements. The set IN(S;(iy,...,ix)), for example, consists of all the variable
instances that are read by S;(i1,...,ix). This is illustrated in the following exam-
ple.

L1: DOI =1, N, 1
S1: A(I) = B(I) + C(I) + D(Z)
ENDDO

OoUT(S:1(1)) = { A(1) } and IN(S1(1)) = {B(1), C(1), D(Z), Z}. The variable
7Z is read in order to compute the subscript expression of the array D. For reasons
discussed below, it is decided to exclude the loop-control variable I from the
IN set. The set IN(L1) = { N } and OUT(L;) = { I } (since the degree of Ly
is 0, it has only once instance).

The data dependence relation is defined on scalar statements first, and this
definition will be extended on indexed statements afterwards. For the sake of
simplicity, only assignment statements are considered.

5.1 Data dependences on Scalar Statements

Four types of data dependences between scalar statements can exist, Flow
Dependences, Anti Dependences, Output Dependences and Input De-
pendences.

11 exicographic Ordering, in which the i, <jr, for 1 < r < k, on the elements indicates that
the value i, occurs before j, in the iteration space of the loop-control variable I,.. If the stride
of the loop is positive, it is the conventional ‘<’ relation.

15 The loop-control variable receives a certain value as the loop has been executed (the first
value that exceeds the upper bound if the stride is positive). Because all the instances of
statements inside the loop body are under control of this variable, these instances will not
have that variable as element in their IN set, for reasons that will be discussed later on, and
since it is forbidden to assign to a loop-control variable, it also cannot be an element of OUT
set. It is not important if the OUT set of a DO-loop statement can be seen inside its body,
since this decision results in the fact that no data dependences can hold between a DO-loop
and the statements inside its body.

43

5.1.1 True Dependence or Flow Dependence

A true dependence holds between two assignment statements S; and S;, if S;
<o S; and OUT(S;) N IN(Sj) # () and Vs, Si <o Sk <o Sj : OUT(Sk) N (
OUT(S;) N IN(S;)) = 0. This relation is denoted by S;8S;. Note that the last
condition reflects the fact that a direct flow dependence only exists between
a statement writing a particular value and the statement reading this value.
In the following example S16S9 holds, caused by the fact that S <o So and
OUT(S1) N IN(S;) = { A }. The dependence is said to be caused by the
occurrence of variable A in both statements 6.

S1: A = <expression>
S2: <variable> = A

Note the need for strictness in the execution order (<o and not <p), since a
flow dependence can never occur in the same statement.

5.1.2 Anti Dependence

An anti dependence between two assignment statements S; and S; holds, if S;
<o S; and IN(S;) N OUT(S;) # 0 and Vs, S; <o Sk <o S;j : OUT(S;) N (
IN(S;) N OUT(S;)) = 0. An anti dependence is denoted by S;0S;. Note the
fact that <o is used in the definition now, because an anti dependence can
occur in one statement as illustrated in the following example where the anti
dependence S18S; caused by the two occurrences of variable A, holds.

S1: A = A + <expression>

A more complicated example is given in the following fragment, in which the
anti dependence S10Ss holds, caused by the fact that variable Z€IN(S;) and
ZeOUT(S,).

S1: <variable> = A(Z)
S52: Z = <expression>

5.1.3 Output Dependence

An output dependence S;6°S; holds if S; <o S; and OUT(S;) N OUT(S;) # 0
and Vs, S; <o Sk <o S; : OUT(Sk) N (OUT(S;) N OUT(S;)) = . So in the
following fragment the output dependence S;°Ss holds, because AcOUT(Sy)
and AcOUT (S2).

S1: A
S2: A

<expression>

<expression>

1611 general, it can be said that the data dependences, defined in this section, are caused
by the occurrence of variables in the corresponding intersections.

44

5.1.4 Input Dependence

If S; <o S; and IN(S;) N IN(S;) # 0 and Vs, S; <o Sk <o S; : OUT(Sk)
N {variable} 7 = @, then these two statements are involved in an input de-
pendence, denoted by SiéiSj. So, in the following example the input depen-
dences S1'Ss holds, because ACIN(S1) and AE€IN(Sz), and S36°S4 holds, be-
cause ZEIN(S3) and ZEIN(Sy),

S1: <variable> =
S2: <variable>
S3: <variable> = B(Z)
S4: <variable> = C(Z)

= =

An assignment statement S; is indirectly dependent on another state-
ment S;, if there exist statements S1,...,Sg, such that the following dependences
hold: S;6%S1, S16*Sa,..., Sp—10"Sg, Skd™S;, where 6" can denote any kind of data
dependence. So, in the following example the dependences S16°So and S90S3
hold. Therefore, Sg is indirectly dependent of S;. Note that formally S15S3 does
not hold, reflecting the fact that S3 only uses the value of So. However, during
the data dependence computation, discussed in section 6, this data dependence
will also be determined, but since an indirect dependence exists, there is no real
need for filtering these virtual dependences out.

S1: A
S2: A = <expression>
S3: <variable> = A

<expression>

In any kind of dependence S;0*S;, S; is said to be the source of the dependence,
and S; is the sink of the dependence.

5.2 Data Dependences on Indexed Statements

The data dependence relations defined on scalar statements, can be extended
to hold on indexed statements as well.

A static dependence exists between two indexed statements if
a dependence as defined earlier exists between at least one pair of
instances of the two statements.

Since scalar statements can be seen as indexed statements, with only one in-
stance, the definition can be applied on both kinds of statements now.

It is important to realize that a static dependence between two indexed
statements is formed by underlying dependences between statement instances.
Therefore, it is possible that one static dependence is caused by more than one
dependence between pairs of statement instances. If it is clear which level of
data dependence is meant, the additional ‘static’ is often omitted.

"Note the difference with the other conditions, since the intersection of two IN sets in not
necessarily a singleton set. The variable that must be taken, is the variable possibly causing
the dependence.

45

Note the need for the extension of the definition of the IN and OUT sets on
indexed statement instances, in order to be able to focus on the variables used
in one particular statement instance. The intersection of two sets of indexed
statement instances consists of a set of variable instances, which can be scalar
variables or array elements.

A static dependence between two indexed statements is denoted by the
same notation as above, with an additional direction flag for every loop-control
variable of the loops surrounding both statements, indicating the direction in
the iteration space in which the dependence between underlying instances hold.
These loops will be referred to as the common nest from now on. The direction
flag is dependent on which iterations the instances of the indexed statements
that are responsible for the static dependence, are executed in. The following
example illustrates the use of a direction flag.

L1: p0r1 =1, N, 1

S1: A(I) = B(D)
S2: C(I) = A(D)
ENDDO

The only static flow dependence that holds in this loop is denoted by S10-So,
because a flow dependence holds between every two instances of S; and So
belonging to the same iteration of the loop. That is why the direction flag ‘=’
is used. Note that the loop-control variable is omitted in the notation of the
static dependence between the indexed statements.

It is also possible that static dependences hold when dependences between
instances of indexed statements of different iterations in a loop hold. In the
next example, the static dependence S16-S9 holds.

L1: DOI =2, N, 1
S1: A(I) = B(I)
S2: C(I) ACT - 1)
ENDDO

The ‘<’-direction is used because all the underlying dependences hold between
an instance of S; of one particular iteration and an instance of S of a later iter-
ation. This static dependence indicates that the instances of this DO-loop can
be executed in any order, as long as the execution of every instance of S; pre-
cedes the execution of the instances of Sy of later iterations. Sj(1) must precede
S2(2), for example. Thus A(1) = B(1) must be executed before C(2) = A(1),
because otherwise C(2) would not receive the value of B(1), which happens
according to the semantics of serial execution of this DO-loop.

A static anti dependence is illustrated in the next example, in which S26-S;
holds.

L1: p0r1=1, N, 1
S1: A(I) = B(I)
S2: C(I) = A(T + 1)
ENDDO

46

This fact can be easier noticed if some of iterations the loop are enrolled, as
shown in the following table.

Index | Instance

I=11]A(1)=BQ1)
C1) = A(2)

I=2] A(2) =B(2)
C(2) = A(3)

The execution of Sy(1) must precede Si(2) to preserve the correct value of
C(1) afterwards. So, there exists a static dependence between these two in-
dexed statements, because So(1) <o Si(2) and the intersection between the
corresponding IN and OUT sets is nonempty. Because I = 1 belongs to an
earlier iteration than I = 2, the direction ‘<’ is used. Dependences that hold
between statement instances of different iterations are called cross iteration or
loop carried dependences.

If the iteration space of the original loop was traversed in reverse order
(iie. DO I =N, 1, -1), the data dependence between statement instances
would turn around, resulting in the static flow dependence S;6-So2. Again the
direction ‘<’ is used because the dependence holds between for example, the
statement instances of I = 1 and I = 2 (and the first one is executed before
the second). So, note that a ‘>’ direction '® can never occur as direction flag
of a static dependence in a single loop.

The sequence of directions is called the dependence direction vector.
An example of a data dependence vector of length two is given below.

L1: o001 =1, N, 1
L2: DO J =2, N, 1
S1: A(I,J) = A(I,J - 1)
ENDDO
ENDDO

The only static dependence in this fragment is denoted by S1d— ~S;. This kind
of dependence is called a self dependence, because the static dependence holds
between different instances of the same statement.

The fact that only direction flags for the loop-control variables in the com-
mon nest are given, is illustrated below. The common nest of S; and Sy is
empty in this example.

L1: o011 =1, N, 1
S1: A(I) = <expression>
ENDDO
L2: p0 I =1, N, 1
L3: b0J =1, N, 1
S2: B(I,J) = A(D)
ENDDO
ENDDO

BWhich can occur in nested loops.

47

Since the values written in the first DO-loop are read in the second DO-loop, a
flow dependences between the instances of S; and Sy exists. It is, however, not
possible to annotate the resulting static dependence S19Ss, with a direction flag
(for example a single ‘=" to reflect the fact that the dependences holds between
statement instances belonging to iterations in which I has the same value),
since all the iterations of the first DO-loop are executed before the iterations
of the DO-loops Lo and L3, and direction flags are only used to indicate the
direction in one iteration space of nested DO-loops.

If a static data dependence holds between two indexed statement instances
S1(i1,...,3%) and Sz(ji, ..., jr), both of degree k, then the 7" distance ¢, is
defined as: ¢, = (jr — ir). The k-tuple < ¢1,...,¢r > is the dependence
distance vector. The true distance ®;; between the two statement instances
is the total number of iterations between the execution of the two instances. It
is easy to see that the following equation holds if the m!" index runs from 1 to
Np,.

k k
<I>ij = QST H Nm
1

r= m=r+1

The true distance is equal to the first distance for dependences between two
statement instances in simple loops. Note that the distances between different
instances that belong to the same static data dependence do not have to be con-
stant. The dependence direction vector can be obtained from the dependence
distance vector, by transforming every element of the tuple into the appropriate
direction flag (0 — ‘=, positive numbers — ‘<’ and negative numbers — ‘>’).
Strictly spoken, the dependence direction vector belongs to the dependence be-
tween two instances of statements and not to the static dependence. So, again,
a static dependence with a certain dependence direction vector can have more
than one instance.

Now it will be discussed, why it is decided that the loop-control variable is
not an element of the IV set of statement instances that are controlled by this
variable. Consider the next example.

S1: I = <expression>
S2: A(I) = <expression>
L1: DO I =1, 10, 1
S3: B(I) = <expression>
S4: C(I) = <expression>
ENDDO
S55: I = <expression>

The following static data dependences hold: S1Sy (caused by the fact that Sq
writes the variable I that S uses in the subscript expression), S109Ly, S26Lq
and L;09S5 (note that S169S5 and S28S5 do not hold because the variable I is
written to in the meanwhile).

If the variable I was taken as part of the I N set of S3 a lot of meaningless
dependences would result. The static dependence S36.S, only reflects the fact

48

that the variable I is used by the two statement instances of the same iteration
(and formally, input dependences across iterations do not hold, because the
variable I is written to before each new iteration). Static dependences between
L; and S3 and S4 are caused by I.L;0-S3 and L15—_S, are caused by the fact that
statement instances of one particular iteration uses values of the loop-control
variable of that same iteration and S3d.L; and S40<L; are caused by the fact
that the loop-control variable is used in the iterations and written to before
the next iteration. So, if I is part of the I N set, it seems that dependences
across iterations exist, although the iterations of the loop in the example can be
executed in any order. The last resulting static dependences are those between
L of different iterations. L152L1 holds because the variable is set before every
iteration (and if the loop-control variable setting is implemented as I = I +
stride, followed by a bounds test, even the dependences Lid-L; and Li6—-L;
hold). Note that another problem is caused by the fact that Ly is at level 0,
although dependences in which L is involved hold at level 1, so a direction flag
has to be added to the dependences.

Therefore, to get rid of all these problems, it is decided that loop-control
variables are not an element of the I N set of statement instances inside its
body. Note that (as stated in footnote 15), since a loop-control variable can
never be written to, it will never be part of a OUT set of statement instances in
its loop body as well. Intuitively this is a right decision, because every iteration
can be treated as having its own local loop-control variable, with a particular
value 9. As long as every statement instance receives the right value of its
loop-control variable and after all iterations the loop-control variable receives
the same value as in the original execution of the DO-loop, the data dependences
inside the loop body caused by the loop-control variable may be ignored. More
formally, for every statement instance the value of I is substituted by its value,
so in IN(S(I)) = {I,...}, the resulting IV set per statement instance contains
a constant, which in general is removed from IN sets: IN(S(i1) = {i1,...}).
The result of this decision is that the only global effect of a loop as a whole
is the final assignment to its loop-control variable. If a programmer uses the
fact that the loop-control variable has a certain value after the execution of a
DO-loop, this is reflected by a flow dependence between the DO-loop and the
statement using the variable. Care must be taken, that this flow dependence will
never be violated by any transformation. Another result of this decision is that
information about input dependences between statement instances of the same
iteration is lost. However, since input dependences can be violated without
changing the semantics of a program, and the only reason for computing input
dependences is to get more insight in the reuse of data, this does not cause
a real problem, since it is a well-known fact that the value of a loop-control
variable is frequently used in every iteration.

The only exception on the elimination of loop-control variable from the 1N
sets of the statements in the body is made for for the determination of de-
pendences between two DO-loops. Naturally, the resulting dependences have

¥1n fact, DOALL-loops are implemented that way, and vector instructions are under im-
plicit control of a loop variable

49

a direction vector with as length the common_nest of the statements involved.
This is done to enable the user to define that in certain transformations the
value of a loop-control variable may not be used by DO-loops that are deeper
in the nest (this is necessary for e.g. loop interchanging). Thus, in the follow-
ing fragment the extra dependences L;16Ls (no direction!) and Lad% Lo caused
by I are concluded, resulting from the fact that I € IN(Lg) (naturally the
dependence 12091y also holds, because J € OUT(Lg)).

L1: DO I =1, 100
L2: DO J = I, 100
ENDDO

ENDDO

50

6 Data Dependence Analysis

Now that the concepts of data dependences have been introduced, the way in
which the restructuring compiler determines the data dependences in a given
program can be presented. First the data structure for storing data dependences
is discussed.

6.1 Data Dependence Table

All static data dependences found in a program must be stored because during
the transformation phase, these dependences are needed in the evaluation of
the conditions of each transformation. Therefore the dependences are saved in
a table, with the following information per entry.

e The source statement of the static dependence (S;, C; or L;).
e The sink statement of the static dependence (S;, C; or L;).
e The kind of data dependence (flow, anti, output or input).

e The symbol table entry of the variable which is in the intersection of the
IN or OUT sets causing this dependence.

e The number of underlying dependences (if this number can be deter-
mined) or a ‘?’ indicating that the exact number is unknown.

e The dependence direction vector of the static dependence.

Because the number of dependences in a program can be arbitrary large, and to
make efficient use of memory, the table has been implemented using dynamic
memory. The separate directions of the data direction vector are stored in a
way, similar to the method presented in section 4.1, for storing the lexemes of
identifiers.

This table is maintained by the functions defined in module deptb.c, which
is listed in appendix L. The contents of the data dependence table is written in
a readable format to the file program.dep after all static data dependences have
been computed, together with some information about the number of static data
dependences found. This table can be examined using the command showdep,
after the program has been read, or the transformation phase is terminated.
The user can select which static dependences must be generated in this file by
using the command dep. This command selects in turn among the following
possibilities of dependence generation.

All static dependences;

Only Flow, Anti and Output dependences

Only static dependences between assignment statements
e Only Flow, Anti and Output dependences between assignment statements

As an example, consider the dependences of the following program fragment.

51

L1: DO I = 2, 100, 1
L2: DO J =1, 100, 1
S1: A(<I> , <J>) = <expression>
S2: R = A(<I-1> , <J+1>)
ENDDO
ENDDO
S3: R = <expression>

In this fragment the static dependences L202 Lo, S10< > Sg, S202 _So, S202 ,Sa,
and S90%s3 hold, which are presented to the user as follows.

Dependence Variable Number
L2 d-outp < L2 J 98
S1 d-flow <> S2 A 9702
S2 d-outp =< S2 R 9801
S2 d-outp <x* 52 R 98
S2 d-outp S3 R 1

Number of input dependences :
Number of output dependences :
Number of flow dependences :
Number of anti dependences :

O~ b O

Total number of dependences : 5

Note that the dependence S90°S; does not have any direction flag, since it
holds for every instance inside the loop body, to the (single) instance outside
the loop body. Because the common nest is 0, no data direction vector is
present. The static dependence S22 ,So holds, because the intermediate writes
of later iterations are not taken into consideration, so the ‘x’ is used, since it
holds for the directions ‘<’, ‘=’, and ‘>’.

6.2 Data Dependence Computation

Since the restructuring compiler will use data dependences to decide which
transformations can be applied without changing the semantics of a program, it
is extremely important that the methods used for data dependence computation
are conservative, i.e. if it is not certain if a particular data dependence will
actually hold during run time, it must be assumed. However, if too many data
dependences are assumed, potential parallelism may be lost. Therefore, it is
very important to find the data dependences in a program as accurately as
possible.

The routines performing data dependence analysis can be found in module
dep.c, which is listed in appendix M. The implementation of this task is a
bit overwhelming, because a lot of different tasks are performed concurrently

52

(traversing the program data structure, maintaining information about the en-
vironment, subscript expression analysis e.d.). Therefore, the algorithms used
are discussed at an abstract level, ignoring a lot of straight-forward to imple-
ment details. The analysis techniques themselves, however, are discussed in
great detail.

For the sake of simplicity the implementation of data dependence computa-
tions compares every statement of the program with all the other statements in
the program, and determines if a data dependence may hold. The disadvantage
of comparing each statement with all other statements is that dependences that
formally do not hold, may be determined. But since the resulting dependences
are a transitive closure of the indirect dependence relation, these dependences
will not limit the transformations possible, but will only slow down the condi-
tion evaluation. One reason that these dependences are not filtered out is that
it cannot always easily be determined if this filtering is valid, since this requires
extensive subscript analysis inside DO-loop bodies. The second reason is that
conditional statements may complicate this filtering process.

For instance, in the following fragment the approximation 2° tests used to see
if the subscript expressions can be equal, may report that f(I) = g(Is), g(Is) =
h(I4) and f(I5) = h(Ig), for different (unknown) values I; in the iteration space,
resulting in the assumption of output dependences on the statement instances,
but it is unclear without a more accurate analysis of the actual values, for which
instances the dependence formally exists (i.e. the array element is not written
to between the two instances).

L1: DO I =1, 100, 1
S1: A(C £(I)) = <expression>
S2: A(g(I)) = <expression>
S3: AC h(I))
ENDDO

<expression>

For example, for f(I) = g(I) = h(I) =1, only the output dependences S152So,
and S262S3 hold, although S162 S3 will be generated by the method used in this
prototype compiler. Because the three statements reference the same element
of A in every iteration, it would be valid to filter this last dependence out. Note
that S; and S3 must still be compared in order to detect this, and to conclude
that no cross iteration dependence between these statements holds.

If £f(I) = 2, g(I) = 4, and h(I) = I, both static dependences S;62S3 and
S202.83 hold, each with only one instance belonging to different iterations. In
this case the first dependence cannot be filtered out, because there is no interme-
diate write between the statement instances that cause this static dependence.
Because the intersection of the outsets of S; and So is always empty, it can
be concluded that no dependence between these statements hold. Again all
pairs of statements must be considered in order to be able to detect the cross
iteration dependences So0°So, S10°S1, S30°S1. The dependence S10°S3 would

20The test used in this compiler will report if subscript expressions can be equal, and if this
is the case the direction in the iteration space is determined, but the actual values for which
these subscripts expressions are equal are not computed.

53

also be generated (because S;(1) and S3(2) both use A(2)), although formally
it does not hold, since A(2) is written to by S2(2).

So, because the filtering can only be done with extensive subscript analysis
(it must be determined which elements are written to in every instance) and
the filtering cannot help to reduce the number of statement pairs that must be
considered (since also cross iteration dependences must be accounted for), it
is decided to generate all dependences. Note that the first problem does not
occur for dependences on scalar variables, but in order to keep the generation
of data dependences consistent, it is decided to ignore intermediate writes to
scalar variables too in the dependence computation, although some information
will be used in the computation of the number of underlying instances.

If conditional statements are present, it cannot be predicted if certain depen-
dences will really exist in all cases, as is demonstrated in the following example.
Whether S16°S3 holds, or S10°Sy and S26°S3 hold, depends on the value of the
variable L1 of type LOGICAL.

S1: R = <expression>
Cl: IF (L1) S2: R = <expression>
S3: R = <expression>

Therefore, some restructuring compilers compute also the so-called control de-
pendence relation (6¢), in order to be able to compute the data dependences
more precisely. This dependence, however, will not be used in this prototype
compiler, although it accounts for the flow of control in the different branches
of one single IF statement. In the following fragment, no dependence can hold,
since only one branch of the IF statement will be executed during run time.

Ci: IF (L1) THEN

S1: R = <expression>
C2: ELSE IF (L2) THEN

S52: R = <expression>
ELSE

S3: R = <expression>
ENDIF

Concluding it can be stated that the prototype compiler computes all data
dependences in a program without inspection of the second condition in the def-
initions of dependences presented in sections 5.1.1 - 5.1.4, and without extensive
control flow analysis.

The actual implementation is done using two pointers to statements. The
first one shifts over all statements of a program indicating the statement cur-
rently under consideration, while the second one iterates over all the statements,
which follow that current statement, before the first pointer is shifted. In this
fashion, all statement pairs are considered. Note at this point that, although
the statement pointed to by the first pointer, precedes the statement pointed to
by the second pointer in the program, this does not mean that all instances of
that statement precede the instances of the second statement at run-time. For
all statement pairs considered in this way, the corresponding IN and OQUT sets

54

are compared, and if non empty intersections are possible, the resulting static
data dependences are assumed, the direction in the iteration space is deter-
mined and they are added in the data dependence table. The global algorithm
is given below.
for every statement s; in the program
do
OUTy = OUT-set(s1);
IN; = IN-set(s1);
compare_sel f();
for every statement sy after s;
do
OUT, = OUT-set(s2);
INy = I N-set(s2);
compare();
end do
end do
Remember that all variables used in subscript expressions are also elements
of the I N set of the corresponding statement. The environment (i.e. nesting
depth and loop-control variables) of both statements s; and sy must be main-
tained for testing purposes. Therefore, interleaved with the algorithm above,
the environments of s; and so are maintained. A variable mynest indicates the
nesting depth of s1, while hisnest holds the nesting depth of so. A variable
minnest < min(mynest,hisnest) keeps track of the common nest depth. The
loop-control variables of the environment of both s; and s, are also adminis-
trated, together with their bounds and stride, if these values can be evaluated
and can be type converted to INTEGER values (if the original expressions are
of type REAL, the evaluation is only successful, if they have an empty frac-
tional part) at compile-time. If these values cannot be determined or are of
type REAL with a non-empty fractional part, it is recorded that the values are
unknown. Why this is done, is discussed in section 6.3.

The compare_sel f() function determines if an anti self dependence exists,
or if cross-iteration self dependences of any kind hold, when mynest > 0. The
function compare() determines all the dependences possible between two dif-
ferent statements

In these two functions, the elements of the appropriate IN and OUT sets
are compared with each other in a pair-wise fashion. Now two actions must be
performed. First, it must be tested if two variables can be in the intersection,
and therefore, are involved in a dependence. Then, if this is the case, the
direction in the iteration space 2! in which the dependence holds must be
determined, possibly resulting in the conclusion that a dependence cannot hold.
Finally, if a dependence is still possible, the correct resulting static dependences
must be determined. These three tasks are discussed in sections 6.3, 6.4, and 6.5.

21This is not exactly the same as the direction flag of the dependence direction vector of
the resulting static dependence, although there is a close relation.

55

6.2.1 Optimizations

The following optimizations for the algorithm presented have been implemented.
If the I N-set of an IF statements only consists of constants (e.g. IF (3.GT.4)
THEN), the examination of all following statements can be skipped (since IN =
() and OUT = (}). The same optimization can be implemented for the ELSE IF
statements inside a general-IF statement.

6.3 Dependence Test between Two Variables

It can be easily determined if a dependence holds between two scalar variables.
The two identifiers are compared and if these are equal, a dependence exists 2.
A dependence between two array variables possibly exists if the correspond-
ing identifiers are equal (so the same array is referenced), and certain tests on
the subscript expressions hold. These tests are applied separately on all corre-
sponding subscript expressions that were transformed into their normal form
of both variables as is illustrated by the following algorithm.
d; = dimist of first array variable
do = dim_list of second array variable;
assumed = true;
while (d; # NULL and assumed) do
if (d; -> normexpr # NULL) and (d2 -> normexpr # NULL)
then
assumed = apply_tests();
end if
d1 = d1 -> tail;
d2 = d2 -> tail;
end do
The occurrence of a dependence, can be found by examining the boolean vari-
able assumed after this algorithm has been executed. The function apply_tests()
also tries to determine the direction per loop-control variable in the iteration
space in which the instances are executed. If conflicting directions for one loop-
control variable are found to hold over different subscript expressions, it can
directly be concluded that no dependence between the current array variables
is possible (see update table at the end of section 6.4).

Now it is already clear why it is so important to convert subscript expressions
into the normal form, because subscript expressions without a normal form
do not participate in the test. So if Z1 and Z2 are variables, which are not
used as a loop-control variable, a dependence between A(Z1) and A(Z2) is
assumed, because both subscript expressions cannot be converted into normal
form, reflecting the fact that the values of these variables cannot be determined
at compile-time. If the inability to convert these subscript expressions into
normal form is only the result of complicated subscript expressions 23, too
many assumed dependences may result.

22 Aliasing is not allowed.
ZTake as an extreme example A(Z1-Z1+I), with I as a loop-control variable in which the
subscript expression cannot be converted into normal form

56

The tests applied subsequently in apply_tests() on the two subscript expres-
sions in normal form are enumerated below. If one of these tests fails, it can
directly be concluded that no dependence can exists without further evaluation
of following tests. Since it must be determined if it is possible that the two
subscript expressions have the same value, the problem can be rewritten into
a single linear diophantine equation as shown below (note that since only one
dimension is considered at the time, collapsing 24 is not applied).

agt+ a1 xi1+...tapxig=bg+brxj1+...+b*7j

with k = mynest, | = hisnest

Vicp<k : Lp <ip < Uy, L,c ZNU, € Z
Viep<t 1 Ly, < jp <U), L, € ZANU, € Z
VQSpSk:apEZ

VOSPSI : bp cZ

Note that, if some of the loop-control variables are in common (minnest > 0)
then, Vlgpgminnest : Lp = L;/n AN Up = Uil/7

Constant Subscript Expression Test: If both subscript expressions are
constant expressions, it can directly be determined if a dependence exists by
testing if bg — ag = 0. So in the following example no data dependence is
assumed between S; and So, since 2 - 1 # 0.

S1: A(1)
S2: A(2)

<expression>

<expression>
G.C.D. Test: This test is based on the following well-known observation.

3 (k1,...,kn) € Z" such that ¢; x k1 + ...cp * ky = co with Vi<p<p 1 ¢p € Z
<~
GCD(eq,. - - 4¢n) | co.

Therefore, it is tested if all the loop-control variables used in the two subscripts
expressions are of type INTEGER and if GCD(| aq |,...,| ar |, | b1 |,---,]| b1 |)
| (] bo —ap |). Remember that all a, and b, are of type INTEGER, since only
subscript expressions in normal form are considered. In the following fragment,
no data dependence between S; and Sg is assumed, since GCD(2,2) J (] 1 -2).

L1: DOI =1, 10, 1
S1: A(2 + 2 * I) = <expression>
S2: A(1 + 2 *x I) = <expression>
ENDDO

24This technique is applied if all subscripts of all dimensions are examined at once.

57

If the stride and the lower bound are known at compile time, the loop can
be normalized, often resulting in a better application of the GCD test as is
illustrated below, in which the GCD test only can conclude that no dependence
holds in the normalized fragment (GCD(2,2) f1).

b0OI =1, 5, 2 DOI =0, 4, 1
AC(D = <expression> >>> A(l + 2 x I) = <normalized expression>
<variable> = A(I + 1) <normalized variable> = A(2 + 2 * I)
ENDDO ENDDO

Therefore, if the lower bound and stride are known for the pt* loop in the
nesting of the first variable, a, * i, is converted into a, * low, + stride, * i;
in which i; has new bounds that are not important for the GCD test. The
same conversion can be done for b, * j,. For all loops in the common nest for
which a, = b,,1 < p < minnest, only the value of the stride must be known
at compile-time, since the offsets on both sides of the equation will be equal
(ap * lowy, = by, * lowy).

Bounds Test: The following observation can be used to test if real solutions
for the equation exist.

3 (1, .- ,0n) € R™ such that ¢g x k1 +...cp x ky = o
with vlSPSn : k‘p S [LZ, U;l/,/]

=4

n

n
€D ely = Ul Y U —c, L]
p=1 p=1

+ Ci if c; >0
0 otherwise

- —¢; ife; <0
10 otherwise

Therefore, it is tested if by — ag € [LOW, HIGH], in which LOW and HIGH are
the minimum and maximum value of the expression aq *i1+...ag*ip —by *j1 —
...—by*j;. This test can be used on loop-control variables of any type, but it is
very important that the coefficients and the bounds are of type INTEGER, to
prevent the inability to detect data dependences caused by run-time round off
errors in the subscript expressions. Consider the following fragment in which
the bounds of a DO-loop are of type REAL.

INTEGER I

L1: DO I =1.5, 10.0, 1.0

S1: A(I) = <expression>
S2: A(1) = <expression>
ENDDO

58

If the bounds test was also applied on REAL typed bounds, the conclusion
would be that there is no output dependence S1d2Ss, since 1 ¢ [1.5,10.0]. How-
ever, since at run time the value 1.5 is rounded to 1 in the subscript evaluation,
a dependence does hold. Therefore, the values of bounds with non-empty frac-
tional part are considered to be unknown. So, using REAL typed values in
DO-loops may result in the assumption of too many data dependences, since
the bounds test will not be evaluated. Naturally, the bounds of the loop-control
variables corresponding to a zero coefficient may be of any type or unknown
value, since it is not used in the bounds test.

The Constant Subscript Expression Test is a special case of the bounds test,
but since it can also be performed in loops with bounds that are unknown at
compile-time, it is included as extra test. The following example demonstrates
the use of the bounds test between different loops. No data dependence is
assumed since 0 ¢ [-19,-1].

L1: DOI =1, 10, 1

S1: A(I) = <expression>
ENDDO
L2: DO I = 11, 20, 1

S1: A(I) = <expression>
ENDDO

Because the upper bound of a DO-loop is not necessarily greater than the lower
bound (e.g. DO I = 10, 1, -1), and since the bounds tests needs the valid
interval for every loop-control variable Vi<,<y : kp € [L;, U], the maximum of
the bounds is assigned to U] and the minimum to L in the implementation of
this test.

6.4 Direction Determination

If after these three tests, a dependence still may exist, a function is called that
tries to determine the order in which the instances of statements involved in
the possible dependence reference the same elements of the current array. This
is done, because the tests only state if a dependence is possible, and do not
use the direction in the iteration space in the constraints, a technique described
in [Ban88] (see section 6.9 for a comparison between that technique and the
method used in this prototype compiler).

The computation of the direction in the prototype compiler is done by
recording the direction in the iteration space for every loop-control variable
in the common nest. This direction can only be determined for two subscript
expressions that are linear functions of the same loop-control variable in the
common nest. Since references to array variables with more than 1 dimension
the subscript expressions are considered in sequence, this may result in an in-
termediate iteration direction vector, because usually the subscript expressions
of corresponding dimensions are linear functions of the same loop-control vari-
able. From this intermediate iteration direction vector, that only indicates the
order in which the array is referenced by the different instances, the resulting
static dependence and its dependence direction vector can be determined.

59

How this direction is determined is illustrated using the following example,
in which the two subscript expressions shown belong to the same dimensions,
and c1, s1, c2, and s2 are constants.

DO 10 T = LOW, HIGH, STRIDE

S1: ... AC...,c1 +s1 xI,...) ... <= f1

S2: ... AC...,c2+s2%x1I,...) ... <= f2
10 CONTINUE

All of the following conclusions can be drawn if STRIDE>0. If s1 = s2 > 0 (the
resulting straight curves of these functions are parallel, and have positive slope)
the direction flag for I in a dependence between S; and Sg is ‘=" if c1 = ¢2, ‘>’
if c1 < c2 and ‘<’ otherwise, as is illustrated in the following picture, for c2 >
c1. If the slopes are negative, the opposite 2° directions must be taken instead.

The ‘>’ direction reflects the fact that the reference to A of a particular
element in an instance of S; follows on the reference to the same element of A
done by an instance of So, in the iteration space of the loop-control variable
under consideration.

If the resulting straight curves are not parallel, the intersection point is
determined (the value for which the outcome of the two linear functions are
equal) and the interval in which the values of the loop-control variable are.
This interval can be one of the following types.

e [eft, which means that all the values are less than the intersection point.

e right, which means that all the values are greater than the intersection
point.

e leftoverlap, which means that all the values are smaller than or equal to
the intersection point.

e rightoverlap, which means that all the values are less than or equal to the
intersection point.

e cqual, which means that the loop is only executed once, and the value of
the loop-control variable is equal to the intersection point. This case is
very rare.

e owverlap, which means that the values appear ‘at both sides’ of the inter-
section point.

The possible intervals are presented in the following picture for the case that
sl >s2>0.

This interval can easily be determined with knowledge of the values of the
stride and bounds in the DO-loop, and the intersection point (IP), using the

25Gee table at the end of this section.

60

value of
the subscript
expression

S2 references certain
elements earlier
in the iteration
space of I than S1

> results

LOW B HIGH

value of the Loop-Control wvariable
(positive stride)

Figure 11: Dependence Direction

following algorithm (STRIDE#0). Again only bounds of type INTEGER are
considered to be known at compile-time, since round-off errors may cause un-
expected values during run-time.
if (values of LOW and HIGH are known and both equal to IP) then
return equal;
else if (value of STRIDE is known) then
if (STRIDE > 0) then
if (value of LOW is known and LOW > IP) then
return (LOW > IP) ? right : rightoverlap;
else if (value of HIGH is known and HIGH < IP) then
return (HIGH < IP) ? left : leftoverlap;
else
return overlap;
end if
else if (STRIDE < 0) then
if (value of LOW is known and LOW < IP) then
return (LOW < IP) ? left : leftoverlap;
else if (value of HIGH is known and HIGH > IP) then

61

return (HIGH > IP) ? right : rightoverlap;
else
return overlap;
end if
end if
else if (values of LOW and HIGH are known) then
if (LOW < IP) and (HIGH < IP) then
return (LOW < IP and HIGH < IP) ? left: leftoverlap;
else if (LOW > IP) and (HIGH > IP) then
return (LOW < IP and HIGH < IP) ? right : rightoverlap;
else
return overlap;
end if
else
return overlap;
end if
In the interval right, if both slopes are positive, ‘<’ can be concluded if 0 < s2
< s1 and ‘>’ otherwise. If both slopes are negative ‘<’ results if s1 < s2 < 0,
or ‘>’ otherwise, as is illustrated in the following picture:

If the slopes have opposite signs, it can be concluded that no dependence
holds, since the functions are divergent. This can be seen in the following
picture:

Analog conclusions can be drawn in the interval left. In the interval left-
overlap and rightoverlap the directions < and > result, instead of < and >
respectively. In the interval equal, only = results. Finally, in the interval over-
lap no conclusion about the direction can be drawn.

If STRIDE < 0, the opposite direction holds, since the iteration space is
traversed in reversed order. If the value of STRIDE cannot be determined at
compile time, the direction and its opposite must be assumed. These two
computations are shown in the following table (a ‘*’ indicates the direction ‘=’,
‘<’or ‘>’ and a ‘+’ indicates the direction ‘<’ or ‘>’). Since the ‘<’ and ‘>’ are
not available as single character, they are represented as ‘[” and ‘]’ respectively
and printed as such in the resulting static dependence list.

| [« l+[<[>[=]
Opposite direction || * | + | > | < | =
Both directions x| 4+ | + | +

* IV [[IA
* [IN|[IV

Once the direction in the iteration space has been determined, it is used
to update a temporary data structure, which contains the computed direction
so far, for all loop-control variables in the common nest. Initially 26 this data
structure contains only ‘x’s, indicating the fact that no directions are known,
and it is updated as every dimension of the two array variables is considered. If a
direction has already been recorded, which is in conflict with the new direction,
it can be concluded that no dependence holds. The following table shows the
resulting direction as function of the previously determined direction.

261 e. before all subscript expressions of every dimension are compared in a pairwise fashion.

62

‘ Update H * ‘ + < > = < >
* * + < > = < >
+ + + < > conflict < >
< < < < conflict | conflict < conflict
> > > conflict > conflict | conflict >
= = | conflict | conflict | conflict = = =
< < < < conflict = < =
> > > conflict > = >

So if, for example in the following fragment, the direction in the iteration space
of I for dependences between elements of the array variable A in instances of
S1 and Ss respectively, is determined, a conflict is detected.

DOI =1, N, 1
S1: A(I,I)
S2: ...

ENDDO

A(I+1,I-1)

Since only the loop-control variable I is in the common nest, the initial data
structure is [x]. After I has been compared with I+1, the direction > is stored,
since instances of So reference array elements before S; in that dimension, re-
sulting in the data structure . Since the comparison of I and I-1 results in
the update with the <-direction, it is concluded that no dependence holds.

The process for two loop-variables and an array of dimension two is illus-
trated below.

PDOI =1, N, 1
b0 J =1, N, 1
S1: A(I,J) = A(I+1,J-1)
ENDDO
ENDDO

Initially the data structure is . After the first dimension has been considered

it is updated to , and finally the result is .

6.5 Resulting Dependences

Once it is determined that two variables are possibly involved in a dependence,
and the intermediate iteration direction vector has been computed, all resulting
static dependences and their dependence direction vectors must be gathered.
The following algorithm determines all the resulting static dependences be-
tween scalar variables (note that array references with constant subscript ex-
pressions are considered as scalar variables 27). The function add_dependence
adds a static dependence between the statements given in the first two parame-
ters to the dependence table. The type of this dependence is given in the third

2TThe same algorithm is used to generate all the dependences between statements that
possibly reference the same elements of an array, but have no loops in common (i.e. minnest =
0). In this case only (1) is executed.

63

parameter and its dependence direction vector in the fourth parameter.

case (set-kind of vy,set-kind of vq)

(In,In) : depl = INPUT; dep2 = INPUT;

(In,Out) : depl = ANTI; dep2 = FLOW;

(Out,In) : depl = FLOW; dep2 = ANTTI;

(Out,Out) : depl = OUTPUT; dep2 = OUTPUT;
end case
if ((sets do not belong to same statement)

or ((In,Out) is considered))

and (dependence possible in flow of control) then

add_dependence(s1,s2,depl,(=, ..., =)); (1)
——
minnest
end if
for i = 0, minnest - 1 do
add_dependence(s2,s1,dep2, (=,...,= ,<,*,...,%)) (2)
———— ——
minnest—1—1 %
end do

The static dependence added in (1) holds between instances of the same iter-
ation of every (possibly zero) surrounding DO-loop. Therefore, it is explicitly
tested if this dependence is possible according to the flow of control, as demon-
strated in the last example of section 6.2. The test of (1) is necessary to preserve
the strictness demands on the execution order in the definitions, discussed in
sections 5.1.1 - 5.1.4. If (In,Out) has been chosen in the case statement, an
anti self dependence results. The dependences added in (2) are all the de-
pendences that hold between statement instances of different iterations. For
example, in the following fragment the data dependences 815;:7:7 <51 indicat-
ing the dependences that hold between instances of different iterations of the
L loop, 5102 _ Sy for iterations over the K loop (and later iterations of the
L loop), S162 ., ,S1, and S102 , , ,S1 hold. It is important to realize that, in
the case of a flow, anti or output dependence, in fact a ‘>’ could have been
concluded, since the writes done in every iteration mask the reads and writes
of later iterations, so the cross iteration dependence formally only holds over
one iteration of the innermost loop. Since intermediate writes of other state-
ment instances (or even of instances of the same statement caused by variables
not under consideration yet) are ignored in other cases, it is decided here to
consequently generate the ‘x’ direction. In the computation of the number of
underlying dependences, however, these writes will not be ignored. For input
dependences the ‘x’ direction is correct, since no write (caused by instances of
the two variables under consideration) will interfere.

1, 10, 1
S1: A(10) = <expression>

64

ENDDO
ENDDO

The computation of static dependences between array variables, in which
loop-control variables appear inside the subscript expressions, require the use
of the intermediate iteration direction vector. This computation is presented in
the following algorithm.

i = position of the first non-‘="in the iteration direction vector;
if i cannot be found then
/* iteration direction vector = (=,...,=) */
if (dependence possible in flow of control) then
process('="); (1)
end if
else

dir = direction at position i;

[x (=, = dir, ...)%/
start rest

case dir
<z oprocess(C<);
> process(’>);
'+ process(’<’); process(’>");
<z oprocess(’<);
set dir to ‘=" and apply algorithm again
> process(’>);
set dir to ‘=" and apply algorithm again
x” 1 process('<’); process(’>")
set dir to ‘=" and apply algorithm again
end case
end if
Case (1) handles dependences between instances of the same iteration, so again
the flow of control test must be performed. The function process() determines
the actual dependence vector and the kind of the resulting dependence. This
is done by the next algorithm, in which dir is the parameter passed to this
function.

9 9

if dir = ‘>’ then
invert intermediate iteration direction vector (1)
end if
store the intermediate iteration direction vector
in the dependence direction vector

dep = table_lookup(dir, (set kind of sy , set kind of s3)); (2)
if (sets do not belong to the same statement
or self dependence is allowed) (3)

if dir = ‘>’ then
add_dependence(sg,s1,dep,dependence direction vector)
else

65

add_dependence(sy ,s2,dep,dependence direction vector)
end if
end if

The table used in (2) is given below. This table also contains the information
if a self dependence is allowed, which is used in the condition (3). For (In,In)
and (Out,Out) self dependences are not allowed if dir is ‘=’, since the resulting
dependence can never hold between the same instances of one iteration. The
reason that self dependences are never allowed for (Out,In) is that these de-
pendences are also computed for the (In,Out) case, and it is not necessary to
conclude the same self dependence twice. Self dependences are also not allowed
for the ‘>’ direction in the (Out,Out) case, since they are always the reversed
versions of the one handled by the ‘<’ direction, because the OUT set is always
a singleton set. This is unfortunately not the case for (In,In) sets, since the
IN set can contain more elements and all different pairs must be compared
because the directions that can be determined may differ. Therefore, the input
dependences belonging to the same pair of variables are generated twice.

| dep || (In,In) ‘ (In,Out) | (Out,In) | (Out,Out) ‘
< || INPUT, allowed | ANTI, allowed | FLOW | OUTPUT, allowed
> || INPUT, allowed | FLOW, allowed | ANTI OUTPUT
= INPUT ANTI, allowed | FLOW OouTPUT

Because the intermediate iteration direction vector only reflects the order in
which the instance references to the same array elements appear in the execu-
tion, it must be turned around (e.g. | >,<,+,=,*,<| becomes),
to obtain the right dependence direction vector. This is illustrated with the
following loop.

DO 10 I =1, 5
b0 5J=1,5

S1: A(I,J) = <expression>
S2: <variable> = A(I,J + 1)
5 CONTINUE
10 CONTINUE

The resulting iteration direction vector in this loop is , since S1 writes
the elements of A after So has read them. The resulting dependence, however,
is Sa0— Sy, since dependences always reflect the flow of data in the execution
order.

The ‘«’, ‘47, ‘<’ and > after the first ‘<’ or ‘>’ (which has been converted
into a ‘<’), are not further expanded, as can be seen in the algorithm, since the
first direction (# ‘=") determines the order of execution in which the dependence
holds and therefore its kind. Expanding these directions would only introduce
more dependences of the same kind, as in the following case. If it is determined
for example, that in a particular dependence the direction vector in the iteration
space is between an I N-set of S; and an OUT-set of Sy, a static anti
dependence results, since the direction in the iteration space is ‘<’, so statement
instances of S; read elements before instances So overwrite them. Expanding the

66

second direction would only result in the list S10< <Sa, S10< ~S2, and S16« —Ss,
which contains no more information than the single representation Slg<7*82.
If the constraints on the loop-control variables would have been used, as is
suggested in section 6.9, expanding could be useful, since some of the directions
might not be possible.

6.6 Improved Data Dependence Computation

In some numerical programs, more than one loop-control variable is used per
subscript expressions. This is the case, for example, if a loop-control variable
is used as an offset in subscript expressions with other-loop control variables,
as is illustrated in the next fragment.

DO 10 BASE = 0, MAXBASE, BASESTEP
D05 TI=1, K

X(BASE + I) = <expression>
<variable> = X(BASE + I + 1)
5 CONTINUE
10 CONTINUE

The algorithm discussed in section 6.3 is not able to determine the direction of
I in the iteration space during a single execution of the first DO-loop, so with-
out any precautions, too many dependences between the first and the second
statement in the loop-body are assumed: S;6— Sa, S20— <S1, and S;6— —Ss,
while in fact only Sa0— ~S; holds. Another problem is that the algorithm is
also not able to determine the direction in the iteration space of the variable I,
in dependences between statement instances belonging to different iterations of
BASE. So, S1d< +S92 and 825<7*81 result, while in fact only S10 ~S2 and 825<7281
hold.

The following two sections discuss methods to overcome both problems.
The subscript expressions of the two variables under consideration are again
presented to the algorithm in terms of their surrounding loop-control variables,
as is illustrated below for a one dimensional array A.

...A(ao +ai x11 + ... +ag * Zk)

A(bo +bixj1+...+ b *]l)
k = mynest Al = hisnest

Since it is very important to have precise information about the directions
of dependences after a prefix of ‘=’-directions, as will be discussed in section
8.2, the first problem is considered to be more important than the second one.
This is reflected in the solutions given.

67

6.6.1 Improved for Prefix of ‘=’-directions

For every array variable which uses more than one loop-control variable in
the subscript expression of a particular dimension, an extra function is called
to determine the dependences that hold whenever a prefix of r loop-control
variables in the common nest is kept invariant. This can be done for 1 < r <
minnest. By using the fact that Vi<,<, : i, = jp, the equation resulting from
the general form given above, can be rewritten into the following form.

ap + (a1 — b1) * i1+ ... + (ar — bp) * iy + Qpy1 *Gpg1 + ...+ ag x ip

bo + bry1 * Jr1 + o+ b x gy

1 <r < minnest

k = mynest Al = hisnest

The three tests and direction determination, mentioned in section 6.3 are ap-
plied to this resulting equation, for all possible r.

The results for a certain value of 7, obtained by these tests and the directions
that can be determined are used in the generation of the static dependences
that hold in the same iteration of the first r loop-control variables, i.e. when
the data direction vector is of the following form.

(:7 seey T dirr—l—la ceey dirminnest)
——

T mainnest—r

So the algorithm of section 6.5 must be adapted to use the new directions if a
dependence with a prefix of ‘=’-directions is generated.

Since sometimes, less loop-control variables are considered (which is the case
if a, = by, for certain 1 < p < minnest), the probability that the direction can
be determined 2® increases, and since coefficients may change, the tests can draw
the conclusion that dependences cannot hold if the first r loop-control variable
are kept invariant, in contrast with the earlier conclusion of these tests.

If a, = b, the p'" coefficient becomes 0 reflecting the fact that both sub-
script expressions have the same offset during one iteration of the pt* loop-
control variable, which can be seen in the following figure for p = 2. Since
the tests consider by — ag, and during one iteration the offset can be seen as
belonging to both constants, these offsets can be ignored,

ag + ay x 11 + ag x 19 +as x 13 + ... + ag * i
—_——
of fset

and

Z8This is because the direction can only be determined for two linear functions.

68

bo + b1 % J1 +ba * jo+bz* j3 + ... + b x i
—————
of fset

k = mynest Al = hisnest

because a1 = by ANi1 = j1 N ag = by Nig = jo

This technique has been implemented by, in the case that minnest > 1, ini-
tializing minnest data structures as follows. For r = 1 (representing
the direction vector if i; is kept invariant), for r = 2 and so on until
r = minnest with as data structure (representing the direction vector
if i1,...,iminnest are kept invariant). After one dimension has been considered,
the directions in the iteration space that already have been found are combined
with the first data structure, by updating this data structure with these direc-
tions with the rules found in the update table of the previous section. Then a;
is set to a; - by, and by to 0, after which the tests are applied as stated above for
r = 1, with all the updates done in the data structure belonging to r = 1. After
that, the data structure belonging to » = 2 is combined with the data structure
of r = 1, and the tests are applied for » = 2. This process repeats until either
r = minnest 2, or it is detected that a dependence is not possible when the
first r loop-control variables are kept invariant. In that case this is recorded,
and used to prevent the generation of all corresponding dependences. After one
dimension has been processed, the next dimension is considered, starting again
with the data structure of the original algorithm, and using the data structures
found for all r.

An optimization can be added, since the three tests and direction determi-
nation need not be executed if b, = 0, as the coefficient of the p'" loop-control
variable does not change in that case compared to the coefficients used in the
tests that are executed earlier.

The use of this technique eliminates the incorrect assumption of the data
dependences of the BASE example, since the equation becomes ag * 1o — bo * jo =
bo — ap if BASE (i.e. i1 and ji) is kept invariant, and the ‘>’ direction can be
determined, resulting in the elimination of S;d— ~S2 and S;16— —S.

To illustrate the implementation, the consecutive data structures are shown,
for the program fragment given below, when array A in S; and S» is considered.

L1: DO I =1, 100, 1
L2: DO J =1, 100, 1
S1: A(<J> , <I+J+1>)
S2: <variable>
ENDDO
ENDDO

<expression>
AC <>, <I+J>)

29The direction determination will never add new information in this case. The application
of the three tests, however, is useful, since the last coefficient also changes.

69

The first row corresponds to the direction of the original algorithm, while the
following rows correspond to » = 1 and r = 2, i.e. keeping I and J invariant,
respectively. The table reflects the execution in ‘column wise’ order. The
conflict is detected because a ‘<’ direction must be placed in the data structure
at the second position.

init 1""dimension 2" dimension
M “Tig—j2=0 *7_:/ i1 tia—j1—je=—1 *,=
! !
=% —combine == —combine ==
! !
g —ja=0 == iy ja=—1 conflict
!
= —combine =,=
!
—0=0 ==

Only the static dependences S1d. -S> and SQS<7281 result, since S;0— —So can-
not hold according to the conflict. The method of the next section will also
eliminate the assumption of the non-existing static dependence SQS<7281.

In the following fragment, it can be detected that no dependences are pos-
sible between S; and So, if the value of loop-control variable I is kept invariant,
because the GCD-test fails as a result of the elimination of one coefficient, as
shown below.

Li: DO I =1, 100, 1
L2: D0 J =1, 100, 1
L3: DO K =1, 100, 1
S1: A(<I+2%J+2%K>)
S2: <variable>
ENDDO
ENDDO
ENDDO

<expression>
A(<I+2%J+2%K+1>)

Since a1 = b1, the variable 71 and j; disappear.

i1+ 2xig+2xi3 =7J1+2%jo+2%xky+1
Tii=j1
2*i2+2*i3=2*j2+2*k‘2—|—1

So the only dependences between S; and S that result are Sid. . .S2 and
S20< x+51. Without the improved technique, the dependences S10— — —S2, S10= — ~So,
S9d—— <S1, S16— < +S2, and Sad— .Se would also have been assumed.

An example in which the altering (to a non-zero value) of one coefficient
enables the GCD test to conclude that no static output dependence between

S1 and Sy is possible is given below.

70

L1: DO I =1, 100, 1
L2: b0 J =1, 100, 1

S1: A(<I+2%J-3>) = <expression>
S2: A(<-1*I+4%J+8>) = <expression>
ENDDO
ENDDO

If Iis kept invariant, the equation can be rewritten as follows.

11+ 2%i2+ 1 —4*jo =11
ii=j1

2%i1 4+ 2%09—4xjog =11

And the last equation has no integer solution, since GCD(2,2,4) = 2 does not
divide 11.

6.6.2 Improved for Prefix of one ‘<’ or ‘>’ direction

In some cases, more directions in the iteration space can be determined in the
case that the first direction is known to be ‘<’ or ‘>’. This is the case when
two subscripts are of the following form (a; = by, a1 # 0, a, = b,, a, # 0 and
Vptonp£inp£rap = 0 and |stride,| > 1).

(10+(11*’i1—|—(17«*’i7«:b0+(11*j1—|—(17«*j7«
with 2 < r < minnest

The conclusions for ag > 0 and a, > 0 are illustrated below for a ‘<’ direction
for the first loop-control variable, i.e. j; — i1 > 1 holds in case of a positive
stride (stride; > 1), since the minimal distance in the iteration space is 1.

ar(ir — jr) = a1 * (j1 — i1) +bo — ag
—_———

>ay

So i, > j, can be concluded for by — ag > a1 and i, > j,. for by — ag = a;. For
a starting ‘>’ direction and in case of a positive stride, i.e. i3 — j1 > 1 holds,
i < jr for by — ag < a1 and i, < j,. for bg — ag = a; results. For all other cases
(positive/negative signs of ag and a,) analog conclusions can be drawn. In case
of a negative stride for the 1% loop-control variable (stride; < —1) the ‘<’ and
‘>’ case must be switched. Note that the conclusions (e.g. i, > j,) is defined
in terms of the ‘normal’ relation on numbers. So, in case of a positive stride for
the pt" loop-control variable (stride, > 0), the same direction in the iteration
space can be concluded, while the opposite direction must be taken in case of
a negative stride (stride, < 0).

Therefore, two data structures are maintained: one for a beginning ‘<’

direction and one for a ‘>’ direction, which are initialized to and

respectively, before two array variables are considered. If minnest >
1, this structure is updated with the directions found so far, and a function is

71

called which determines if more conclusions can be drawn using the method of
this section. If that is the case, these directions are updated and recorded in the
corresponding data structure. This updating and the calling of the function is
done for every dimension, using the same data structure. If conflicting directions
are detected, this is recorded to prevent the corresponding dependences from
being generated. The algorithm of section 6.5 must be extended to use these
directions while generating data dependences with a beginning ‘<’ 3% direction.

Note that another improvement would be to maintain data structures for
every possible combination of ‘<’ and ‘>’ directions at all places, but this would
only work in limited cases, unless a more extensive analysis of the subscript
expressions is implemented. The ad hoc solution of this section has been added
because it works in case of simple subscript expressions, and it does not require
much computational effort. This technique solves the problem with the BASE
loop-control variable introduced at the beginning of this section, since it is able
to determine the second direction of the flow and anti dependence: Sid. ~S»
and 828<7281.

To illustrate the implementation, the data structures of the original program
and for the ‘<’ and ‘>’ directions are shown for the following fragment (that
was also considered in the previous section), in which static dependences caused
by references to array A between S; and S are determined.

L1: DO I =1, 100, 1
L2: DO J =1, 100, 1
S1: A(C <J> , <I+J+1>) = <expression>
S2: <variable> = AC <JI> , <I+J>)
ENDDO
ENDDO

In the data structure for a starting ‘<’ direction, examination of the first sub-
scripts does not add any additional information (‘*’ is updated), while examina-
tion of the second subscripts result in the updating with ‘>’. The dependence
S10<,=52 results.

init 1"dimension 2" dimension
*yk ig—j2=0 = Titie—ji—je=—1 *,=
<,* —combine <,= —combine <,=
— <, > <
>, % —combine >,= —combine >,=
—y >, = —s conflict

The conflict is detected in case of a starting ‘>’ direction, because a ‘>’ direction
must be placed at the second position in the data structure, which already
contains an ‘=" direction. Therefore, the dependence S20. —S; is not assumed.

30Remember that the first >’ direction in the iteration space is reversed in the resulting
dependence.

72

6.7 Computation of Number of Underlying Dependences

In some cases it can be determined how many dependences between statement
instances are responsible for one static dependence. One must keep in mind,
that this number is computed without checking intermediate writes of any other
statement, without writes to (the same) variables not under consideration when
two variables are handled (but possibly in the statements under consideration),
and without the use of extensive knowledge of the flow of control in conditional
statements. Intermediate writes to the current two variables of the instances of
the statements involved in the static dependence, however, will be taken into
consideration in the computation.

6.7.1 Scalar Like Variables

The number of underlying dependences for a static dependence caused by the
use of scalar variables or array variables with constant subscript expressions, can
easily be computed for two statements inside the same nest (mynest = minnest
and hisnest = minnest).

L1: D0I =1, N, 1
S1: R = <expression>
S2: <variable> = R
ENDDO

The flow dependence S1S5 has N different instances, and the cross iteration anti
dependence S90Sy has N-1 different instances, ignoring all variable occurrences
in <expression> and <variable>, but accounting for the intermediate writes in
every iteration caused by the considered variables. In general, the number Num
of underlying instances of statements inside the same nest can be determined
for the case that the direction vector is (=, ..., =), in which case

——

mainnest

mannest
Num = H N;
i=1

where N; is the number of iterations of the i** loop, or for direction vectors

(:7---:7<7 Ky ey X)7
~—— ~——
T minnest—1—r

with
I8

Num = ([[Ni) * (Ny41 — 1), dep# INPUT
=1

73

because the number of times an iteration is crossed, is one less than the number
of iterations. In the last case the determined number cannot be used for input
dependences, since formally these hold between all different pairs taken from all
instances. In the case of a flow, input or anti dependence, every intermediate
write formally prohibits the flow to instances of later iterations, and those
writes are taken into consideration, in contrast with possible writes of instances
of other statements or caused by variables not under consideration.

If N; cannot be determined at compile-time, the number of underlying de-
pendences is set to unknown. If a DO-loop is not executed at all (N; = 0) the
static dependence with 0 underlying dependences is not recorded, since it does
not really hold.

If the statements do not appear inside the same nest, some extra information
must be used in the computation. Consider the following examples.

poI=1, 10, 1 pD0I =1, 10, 1

S1: A = <expression> S1: <variable> = A
ENDDO ENDDO
S2: <variable> = A S52: A = <expression>

In the left fragment, the flow dependence between S; and S has only one un-
derlying instance, since formally no dependences holds between S;(1) through
S1(9) and Sy. In the right fragment, however, 10 anti dependences are responsi-
ble for the static anti dependence S10So, since no intermediate writes are done
(assuming <variable> is not A). So the kind of dependence must be used in the
computation of the number. In general it can be stated that for the direction
vector (=, ..., =), the following equations hold.
———

mannest

minnest hisnest
Num=([[N)=([I N/), dep=FLOW
=1 i=mainnest+1

minnest mynest

Num=([[N)*([N/, dep=ANTI
=1 i=mainnest+1

mainnest

Num=([[M), dep=OUTPUT
=1

In these equations, IV;, with 1 < ¢ < minnest indicates the number of iter-
ations of the common nest, N/, with minnest + 1 < i < mynest, and N/,
with minnest + 1 < i < hisnest the number of iterations of the loops only
surrounding the first and second statement respectively. Because the number
of underlying instances for input dependences is usually a very large number (it
is an accumulated product), it is only determined for the case that the nesting
of one of the two statements is empty. The formula is given below for the case
that the first statement has a nesting depth of 0.

hisnest

Num=([[N/), dep=INPUT
=1

74

In case the direction vector of a dependence has the form (=, ...,=,<, *,..,x),

r minnest—1—r
the following equations hold.
T mynest
Num:(HNi)*(Nr—l—l_l)*(H N}), dep=FLOW
i=1 i=minnest+1

r hisnest
Num:(HNZ-)*(NH_l—l)*(H N!), dep= ANTI
=1 i=mainnest+1
r
Num = (][Ni) * (Ny41 — 1), dep=OUTPUT

i=1

6.7.2 Indexed Variables

The number of underlying dependences in which array variables are involved
can be determined with the techniques found in [ETW92]. The implementation
of these techniques in this prototype compiler can handle the cases in which
the number of variables in the diophantine equation (for which the coefficient
0) is less than 5 and for which all subscript expressions are in normal form
and the bounds and stride values of all surrounding DO-loops are known.

First the set of equations that results in case of multi dimensional arrays is
collapsed into a single equation by using the fact that an element A(J,.J, K) of
array A can be found at address of fset + I + J xdy + K * dy * do 3!, in which
d; indicates the size of the i*" dimension. So, the following set can be collapsed
into the equation below.

a19 +a11 %01 + ... +ap * i = big+ b1 xj1+ ... + by x gy

mo + Am1 * 11+ oo+ Qg * T = Do + b1 * J1 4 o A Dy *

apo+ ... +di % ... % dpppe1 * Ao+
((111 + ot di xRk dy— * aml) %01 + ...

+(a1g + oo+ dy %ok dipy—1 * Qg * T

3! Arrays are stored in column major order in FORTRAN.

75

big+ ... +di *...xdj_1 * b+
(b11 4 .. +dy* oo dj—1 % bp1) * j1 + ...

+ (b1 + oo dy ok diy k bpy) * i

So the problem can be rewritten into an equation of the following form, for
certain n, in which the coefficients that are 0 have been filtered out.

Cl*11] + ...Cp ¥ 1y, = Cg
lowery, <1, < upper,, in which i, has stride,

After that the corresponding loops are normalized resulting in new coefficients
¢, = ¢p * stride, for 1 < p < n, lower bound (0) and upper bound (upper’ =
lowery/stride,) and adaptation of the constant for every p (¢ — ¢, * lower)).
In this way, the stride of the original DO-loops is accounted for in the number
determination since all the resulting DO-loops have stride 1. Since the method
described in [ETW92] requires that all the coefficients are > 0 all coefficients
that are < 0 are negated. Because this requires the bounds to be negated and
reversed and since the resulting lower bounds must normalized again to 0, the
adaptation of the constant (c + ¢; * upper!) is also performed 32.

Because coefficients that are 0 cannot be used in the formulae found in
[ETW92], they have been filtered out first. However, every possible value of
associated loop-control variable will add an extra solution to all solutions of the
equation. Therefore, the following number is computed, which will be used in

the generation of the final answer.

. "
Extra_Solutions = Hp,coefficient p has been filtered outh 33

As last step, all coefficients and the constant are divided by GCD(¢q,...,¢p,).
If the constant cannot be divided by this GCD, it can be concluded that no
dependence holds (this is an application of the GCD test on the collapsed
equation).

The number of solutions for the resulting equation is determined with the
techniques found in [ETW92]. In this prototype compiler it has been imple-
mented for all n < 4. So this number can be determined for all dependences
between statements for which the total number of loop-control variables used
in the subscript expressions < 4 (so the number of loop-control variables that
have a coefficient with value 0 do not add to that number n). This means
that for many cases the number can be determined as is illustrated for some
simple examples in the following table (I, are loop-control variables and ¢, are
constants).

32The reason that the first two steps found in [ETW92] (make all a; > 0 and make all M; =
can be performed in one step now, is that the loop has been normalized first.
#3This can be N;, N/ or N,/ introduced in the previous section.

76

n=1 n=4
1 dimension A(l) < A(ey) AL+ L+ I3+ 1) < A(er)
A(Cl) — A(Il) A(Il + Iy + 13) — A(I4)
2 dimensions | A(I1,c1) < A(ca,c3) A(I,15) < A(I3,14)

The following observations are done in [ETW92].

Aupper’l,...,uppev";l(clv -0y Cnj CO)

(the number of solutions for the bounded equation)
be expressed in terms of

Aso(C1y vy Cri o)

(the number of solutions for the unbounded case)
using the fact that A is the coefficient of 0 in the series development of

1
(I —az)...(1—z)

for which formulae can be found

Therefore, the number of solutions for the bounded case can also be determined.
After this number has been computed it is multiplied with Extra_solutions.
This final number is stored with every static dependence that results. So, for
example, if the number of elements of array A used in S; as well as in Sy can be
determined, but the direction in the iteration space is unknown, that number
is stored with S10—Ss and S26-S1, indicating the fact that the total number of
dependences that are responsible for the two static dependences is known.

L1: DO I =1, 100, 1
S1: A(g(I)) = <expression>
S82: <variable> = A(h(I))
ENDDO

6.8 Examples of Data Dependence Computation

To illustrate the dependence computation discussed in this section, some small
programs and the computed static dependences are given. The subscript ex-
pressions in these programs are shown in normal form.

Li: DO I =1, 20, 1
S1: A(<I>) = B(<-1xI+41>)
S2: B(<I>) = C(<I>)
ENDDO

77

L2: DO J = 21, 40, 1
S83: A(<J>) = B(<-1*xJ+41>)
S4: B(<J>) = C(<J>)

ENDDO

These two loops are the result of the transformation Index Set Splitting, which
splits the bounds of a DO-loop in such a fashion, that dependences between
instances of different iterations are converted into cross DO-loop dependences.
The data dependence computation correctly determines that no cross iteration
dependences exist. The number of underlying dependences between both DO-
loops can be determined

Dependence Variable Number
S1 d-anti sS4 B 20
52 d-flow S3 B 20

The following example demonstrates that normalizing DO-loops first is neces-
sary for the correct determination of the underlying dependences. The depen-
dence table is shown without statistics.

L1: DO I =1, 100, 2

S1: AC <I>) = 100.000000
ENDDO
L2: DO I =1, 100, 1

S2: A(C <I>) = 200.000000

ENDDO
Dependence Variable Number
L1 d-outp L2 I 1
S1 d-outp 52 A 50

The following example has been taken from [Ban8§|.

S1: X = (Y + 1)
Li: DO I =2, 30, 1
S2: C(<I>) = (X + B(<I>))
S3: A(<I>) = (C(<I-1>) + 2)
S4: C(<I+1>) = (B(<I>) * A(<I>))
L2: DO J =2, 50, 1
S5: F(<I> , <J>) = (F(<I> , <J-1>) + X)
ENDDO
ENDDO
S6: Z = (Y + 3)

The following dependences are assumed, where the dependences marked with a
(*) were given in [Ban88|. The other dependences are between non-assignment
statements (Lod<Lsg), or are input dependences.

78

Dependence Variable Number

S1 d-flow S2 X 29
S1 d-flow S5 X 1421
S1 d-input S6 Y 1

52 d-input < S2 X 7

S2 d-flow < S3 C 28
S4 d-outp < 52 C 28
S2 d-input = S4 B 29
S2 d-input = S5 X

S5 d-input < S2 X

S3 d-input < S3 YA [

S4 d-flow < S3 C 27
S3 d-flow = S4 A 29
S3 d-anti S6 Z 29
L2 d-outp < L2 J 28
S5 d-flow =< S5 F 1392 *
S5 d-input =< S5 X 7

S5 d-input <x* S5 X 7

Number of static input dependences :
Number of static output dependences :
Number of static flow dependences :
Number of static anti dependences :

= O N 0

Total number of static dependences : 17
The following program computes the so-called Laplace operator:

L1: DOI =2, 99, 1
L2: DO J =2, 99, 1
S1: A(<I>, <J>) = ((((A(C <I-1>, <J>) + A(<I+1>, <J>
+)) + AC <I>, <J-1>)) + A(<I>, <J+1>»)) / 4)
ENDDO
ENDDO

As can be seen from the resulting static data dependences, cross iteration de-
pendences exists for both loops (the input dependences are not shown).

Dependence Variable Number
L2 d-outp < L2 J 97

S1 d-anti =< S1 A 9506
S1 d-flow =< S1 A 9506
S1 d-anti <= S1 A 9506
S1 d-flow <= S1 A 9506

Number of static input dependences : 12

79

Number of static output dependences : 1
Number of static flow dependences : 2
Number of static anti dependences : 2

Total number of static dependences : 17

The innermost DO-loop however can be skewed with a factor 1, which results
in the following program.

L1: DO I = 2, 99, 1
L2: DOJ=(I +2), (I +99, 1
S1: A(<I>, <-1*xI+J>) = (((CA(<I-1>, <-1xI+J>) + A(<I
+ +1>, <=1xI+J>)) + A(<I>, <-1*xI+J-1>)) + A(<I>, <-1xI+J+1>
+)) /4
ENDDO
ENDDO

The following dependences (shown only for flow and anti dependences that are
caused by references to the array A) are determined. Note that the number
of underlying dependences cannot be determined because the bounds of the
innermost DO-loop are too complicated for the method used.

Dependence Variable Number

S1 d-anti =< S1
S1 d-flow =< S1
S1 d-anti <K< S1
S1 d-flow << S1

i
EVEEESVEREEN ERERN]

Number of static input dependences : 16
Number of static output dependences : 1
Number of static flow dependences : 4
Number of static anti dependences : 2

Total number of static dependences : 23

Note that the second direction of the last two dependences shown are deter-
mined with the ad-hoc solution for the starting ‘<’ and ‘>’ directions. This
method also works in the following fragment in which a negative stride is used.

Li: DO I =1, 100, 1
L2: DO J = 100, 1, -1
S1: A(<I+J>) 10.000000
S2: C(<I> , <J>) = A(<I+J+1>)
ENDDO
ENDDO

o~

80

Dependence Variable Number

L2 d-outp < L2 J 99

S1 d-outp << S1 A 666700
S1 d-flow << S2 A 666600
S2 d-anti <[S1 A 666600
S1 d-flow =< S2 A 666600
S2 d-input << S2 A 666700
S2 d-input << S2 A 666700

Number of static input dependences :
Number of static output dependences :
Number of static flow dependences :
Number of static anti dependences :

=N NN

Total number of static dependences : 7

All dependences found in the following fragment that uses a so-called wrap
around variable in the subscript expression of array B, are listed below (without
the final statistics).

S1: II = 100
Li1: DO I =1, 100, 1
S2: A(<I>) = B(II)

S3: II =1

ENDDO
Dependence Variable Number
S1 d-flow 52 II 100
S1 d-outp S3 II 1
S2 d-input < S2 B
S2 d-input < S2 B
52 d-input < S2 II /
52 d-anti = S3 II 100
S3 d-flow < S2 II 99
S3 d-outp < S3 II 99

The following example shows the fact that the number of dependences is com-
puted without extensive analysis of the flow of control in the program. For
example, it is assumed that the dependence S169S; occurs 99 times, although
the evaluation of the condition is unknown at compile time. Again the statistics
are not shown.

=1, 100, 1
Cl: IF (...) S1: R = (R + A(<I>))

81

Dependence Variable Number

S1 d-outp < S1 R 99
S1 d-anti = S1 R 100
S1 d-flow < S1 R 99
S1 d-anti < S1 R 99
S1 d-input < S1 R ?

The following example shows that the dependences L15L2,1452[Q and LodLs
result from the decision to keep loop-control variables in the I N set during the
determination of dependences between DO-loops. Note that even the correct
number of underlying dependences can be determined if one keeps in mind
that the variables used in bounds and stride are only read before all iterations
are executed. Remember that I and J are no elements of the I N sets of the
assignment statements S; and So.

L1: DO I =1, 100, 1
L2: DO J = I, 100, 1
S1: A(C <I> , <J>) = 100.000000

ENDDO
ENDDO
L3: DOI =1, 100, 1
S2: B(<I>) = 100.000000
ENDDO
Dependence Variable Number
L1 d-flow L2 I 100
L1 d-outp L3 I 1
L2 d-outp < L2 J 99
L2 d-input < L2 I 7
L2 d-anti L3 I 100

The last example shows all static dependences generated for a fragment with
three nested DO-loops (without statistics).

Li: DO I =1, 100, 1
L2: DO J 1, 100, 1
L3: DO K =1, 100, 1
S1: A(<I+2%J+2%K>) = 10
S2: E(<I> , <J> , <K>) = A(<I+2%xJ+2%K+1>)

ENDDO
ENDDO
ENDDO
Dependence Variable Number
L2 d-outp < L2 J 99

82

L3 d-outp =< L3 K 9900
L3 d-outp <x* L3 K 99
S1 d-outp <*x Si A ?
S1 d-outp =<* S1 A ?
S1 d-flow <xx S2 A ?
S2 d-anti <*xx S1 A ?
S2 d-input <**x S2 A 7
S2 d-input <**x S2 A 7
S2 d-input =<*x S2 A 7
S2 d-input =<*x S2 A 7

Note that the self output dependence of S; is generated once, while the self
input dependences appear twice. This is a result of the fact that the entry of
(In,In) in the lookup table allows self dependences.

6.9 Concluding Remarks

The methods to determine static data dependences used in this prototype com-
piler, determine from a subscript expression the resulting dependences in three
steps (is a dependence possible?; which direction does it have in the itera-
tion space?; and which dependences result?). Another approach can be found
in [Ban88|, in which it is determined for all possible directions in the itera-
tion space, if corresponding subscript expressions of two array variables can be
equal. This is done, by using the general solution to the equations defined in
terms of parameters in the resulting constraints to determine if a solution exists.
This can be done with so-called ‘linear programming’ algorithms. If a solution
can be found, the corresponding dependence is concluded. Since most of the
computational effort to determine the general solution can be done during the
evaluation of the GCD-test, the ‘linear programming’ step will require most
computational time.

The following fragment, found in [Ban88], illustrates that the effectiveness
of the technique proposed by Banerjee is not greater than the technique used
in this prototype compiler in case of subscript expressions in which only one
loop-control variable is used.

L1: D01 =1L, U, 1
S1: <variable>
S2: A(2+¢I + 7)

ENDDO

AC3*xI + 1)
<expression>

A static flow dependence between So and S; exists, if the following equation
can be satisfied under the given constraints (i and j correspond to the iteration
of S1 and Sy respectively).

Jijy:3%i+1=2%j+TAj<iANL<i<UAL<j<U

The general solution of the linear diophantine equation, is (7, j) = (2+2xt, 3xt).
Using this solution, the problem can be rewritten into the following form.

3%t <24+ 2xt AL <3xt<UANL<242xt<U

83

The dependence holds, if such ¢ can be found. Analog constraints result if it
is determined that a cross iteration anti dependence holds (i < j) or an anti
dependence in the same iteration holds (i = j). That the same dependences
result with the techniques of the prototype compiler, can be seen in the following
pictures. Figure 15 illustrates the conclusion that can be drawn in terms of
parameter ¢, while the figure 16 illustrates that the same conclusion can directly
be derived, using ¢ and j.

In case of several loop-control variables, the technique of [Ban88] performs
better in general, since every possible direction at every possible place is exam-
ined in turn, and used in the constraints, while the technique of the prototype
compiler only accounts for the resulting constraints for a prefix of ‘=" directions
and single ‘<’ and ‘>’ directions.

However, a future extension of the dependence computation is to use the
technique of [Ban88] in the dependence generation algorithm of section 6.5 for
every unknown direction (i.e. ‘*’ and ‘+’) before a dependence is added. In this
case the generation must not stop after the first ‘<’, since it is possible that not
all the following ‘x’ directions really hold. By doing so, the efficient algorithm
acts as a filter, while expensive ‘linear programming’ is only used for the cases
that are difficult to analyze.

84

value of
the subscript
expression

§

f1

rightoverlap

overlap |

! leftoverlap)

: right
' |
ol |

equal =% !

IP

Positive Stride

Negative Stride

Figure 12: Dependence Direction

85

value of
the subscript
expression

S1 references
elements before
S2 does

L2

fl

§< results ! -

'] ' ']

P !
LOW HIGH

B

B

value of the Loop-Control wvariable
(positive stride)

Figure 13: Dependence Direction

86

value of
the subscript
expression

No dependence holds
between S1 and S2

1

divergent

|

[
LOW

IS

I
HIGH

B

=

value of the Loop-Control wvariable

(positive stride)

Figure 14: No Dependence

87

an anti dependence
and a flow dependence

j =
3 *t
I I o
I I =
2 + 2 * t
I I
I I
g j > 1 so an
5 — E I I‘?,/”’ anti dependence
!
, _ | | Interval defined
i < 3 so a by L <= 3 * t <=0
flow dependence and L <= 2 + 2 * £ <= U
Figure 15:

88

anti- and
flow dependence

anti dependence

flow dependence | |

interval in which
both i1 and j are

Figure 16:

89

7 The transformation language

The prototype compiler enables the user to define transformations which the
compiler will use during the transformation phase. This is done by means of
a simple transformation language to describe transformations on program pat-
terns with associated conditions under which a transformation can be applied.
The only conditions available in the first version of the transformation lan-
guage, are conditions on data dependences, and are necessary to determine if
a particular transformation is valid, i.e. applying the transformation does not
change the semantics of the program. An extension of this language is to en-
able the user to define for example conditions on the values of variables or the
number of underlying dependences. This is not necessary for determining if the
transformation is valid, but to determine if the transformation is advantageous.

The general form of a single transformation with its conditions is shown in

the following picture.
transform
< patternl >
into
< pattern2 >
condition
< conditionlist >
9
Whenever < patternl > (which will be referred to as the left-hand-side pat-
tern) matches on a fragment in the program, and all the conditions in <
conditionlist > hold, the fragment in the program will be replaced with <
pattern2 > (the right-hand-side pattern) if this transformation is applied. The
patterns are created from simple templates, specifying statement lists, DO-
loops, IF-statements and assignment statements, and statement-pointer vari-
ables, which will be bound to program fragments during the transformation
phase. Patterns for expressions inside these statements can be specified using
constants and operators as in FORTRAN 77 and expression-pointer variables.
It is the responsibility of the user to specify the transformation and its con-
ditions, in such a way that the semantics of the original code are preserved
whenever this transformation is applied.

Because the goal of this prototype compiler is to explore the required nature
of a transformation language and its effect on the behavior of the compiler,
certain demands are placed on the first version of the transformation language
and its implementation in the prototype compiler.

e It must be powerful enough to define most known program transforma-
tions and their conditions.

e It must have as few semantic constraints as possible, because constraints
prohibit the flexibility of the language.

e Its implementation must be easy to adapt, because it must be possible to
experiment with different language constructs.

90

Therefore it is decided to use the LEX and YACC tools to generate the
lexical and syntax analyzer, since the underlying source language using these
tools can be easily adapted. Only the front end phases are necessary to read in
the transformations, since only the transformations have to be stored in a data
structure. This is illustrated in the following picture.

Semantic Analysis

¢

Syntax Analysis

¢

Lexical Analysis

Qta StructuD

Figure 17: Reading in the Transformation Language

The following sections present the lexical, syntax and semantic analysis of
the transformation language, and how transformations are stored. The use of
the language to define transformations is discussed in section 7.5.

7.1 Lexical Analysis

All characters in the transformation language must be in lower case. The follow-
ing strings are reserved keywords, used for specifying patterns and conditions:
and, assign, condition, do, doall, end, if, ifbody, into, 1list, merge next,
nil, nodep, transform, true, flow, anti, output, input, and vectorize. In-
teger, real and logical constants and operators are defined as in FORTRAN 77
(text in constants must also be in lower case). The value of an integer or the rep-
resentation of a logical constant is stored in the attribute of the corresponding
token, while the value of a real constant is saved in a temporary variable. Strings
that match on one of the following regular expressions "!e"{digit}{digit}?
and "!'s"{digit}{digit}? are passed to the parser as EXPRVAR (an expression-
pointer variable) or STMTVAR (a statement-pointer variable) respectively. The
attribute of this token contains the number identifier of the variable.

Spaces, tabs and newlines between the lexemes are ignored. All text after
a ‘#’ symbol is ignored up to and including the first newline, to provide the

91

possibility to include comments in the transformation file. All strings that
do not match keywords are assumed to be the name of variables or intrinsic
functions 34, and are inserted in the symbol table. The entry in the symbol
table is passed to the parser in the attribute of the token.

The LEX definitions for the transformation file can be found in module
scanner.l, which is listed in appendix O.

7.2 Syntax Analysis

The transformation language is parsed according to the following context-free
grammar.

trafos — trafo trafos
| END

I

34Which are supported in the resulting code, as is explained in section 7.5.

92

trafo — TRANSFORM pattern
INTO pattern
CONDITION conditions

;
pattern — LIST ‘(’ stmt *,” pattern ‘)’
| STMTVAR
| MERGE ‘(’ pattern ‘,” pattern ‘)’
| NIL
DO ‘(" exp ‘)" exp ‘," exp ‘,” exp *,” pattern ‘)’
DOALL ‘(" exp *,” exp ,” exp ,” exp ‘,’ pattern ‘)’
ASSIGN ‘(" exp ‘)" exp ‘)’
IF ‘(’ exp *,” pattern ‘)’

stmt

EXPRVAR
exp ‘+’ exp

exp

| NOT exp

| Texp

| ey

| INTCONST

| REALCONST

| BOOLCONST

| VECTORIZE ‘(" EXPRVAR ‘|” EXPRVAR ‘,’ exp " exp ‘" exp)’
| FUNC ‘(Cexp‘, exp’)

| FUNC ‘(" exp ‘)’

| FUNC

conditions — condition AND conditions
condition

|
condition ~— TRUE
| NODEP DEPKIND dirvec ‘(’ s_indic ‘,” s_indic ‘)" onclause

)

onclause — ‘>’ EXPRVAR
| e

dirvec — dir dirvec
| €
)

dir — =
|
|
|
)

93

sindic — ‘$ attribs

attribs — ‘.7 NEXT
| <2 DOBODY
| ¢ IFBODY
| ¢ HEAD
|

;

Program patterns are described with the templates do(...) , doall(...),
assign(...), and if(...) 3° inside a statement list template 1ist(...).
This last template describes a statement list as a single statement followed by
a statement list (again specified by a pattern). An empty statement list if
specified with the template nil. The body of a DO-loop or an IF statement is
another pattern. Every pattern ends with the description of an empty statement
list nil, a statement pointer variable (e.g. 's12), which will be bound during
the application of this transformation to the program fragment appearing at
that place, or a merge operator, which will merge two statement lists during
the transformation phase (this operator can only be used in the right-hand-side
pattern).

Expressions are specified with the operators and constants of FORTRAN
77 or expression-pointer variables. The last three rules of exp are necessary to
introduce variables (scalar or array variables of dimension 1 or 2) or intrinsic
functions with one or two arguments. This construction can therefore only
be used in right-hand-side patterns. Another construction that can only be
used on right-hand-side patterns is the vectorize operator, which transforms
expressions into vectorized form.

Every transformation has an associated condition list, which consists of
conditions separated by the keyword and. A condition is either true, which
always holds, or an expression of the following form: nodep < kind > <
datadirectionvector > (< structurel >, < structure2 >). The structures are
used to select statement lists inside the patterns.

The YACC definitions can be found in module parser.y, which is listed in
appendix P. If syntax errors appear in the transformation definitions, the first
one is reported to the user, after which the parsing phase terminates.

7.3 Semantics of the Transformation Language

Although the semantic checking of the language is limited, some checks are
performed to prevent serious problems during the transformation application
phase.

Statement- and expression-pointer variables used inside right-hand-side pat-
terns or the associated condition must also appear in the corresponding left-
hand-side pattern, because otherwise they will be unbound during the applica-
tion phase. If such unbound variables are detected, an error is generated. If a

35This templates matches on general-IF statements as well as on logical-IF statements.

94

statement-pointer variable is used more than once in a left-hand-side pattern
an error is generated. This is not done for expression-pointer variables that are
used several times, because this is allowed to indicate that the bindings of these
variable must be consistent in a matching program fragment.

If the merge or vectorize operator or the construction for introducing
variables or intrinsic functions occurs inside a left-hand-side pattern, an error
is generated. If a vectorize operator is used inside another vectorize oper-
ator, an error is generated too. It is also tested whether the structures inside
the conditions match on the left-hand-side pattern of that transformation and
the number of associated directions correspond with the common nest of two
statement lists, defined by these structures. See section 7.5 for more explana-
tion.

7.3.1 Example of semantic checking

The following errors are generated, when the following transformation file is
presented to the prototype compiler (the transformation specified is completely
useless, but is used to illustrate the generation of errors).

Example of an incorrect transformation file

transform

list(do('el, '!'e2, 'e3, led4, merge(!sl,!sl)), !sl)
into

list(doall(lel, 'e2, !e3, l'eb5, Isl), !s2)
condition

nodep flow << ($.next,$.ifbody)

end
=> readtrf wrongtrafo

- Error: Variable s1 is used more than once (line 4)

- Error: Merge cannot be used at left hand side (line 4)

- Error: Variable e5 is not defined before use (line 6)

- Error: Variable s2 is not defined before use (line 6)

- Error: Incorrect number of directions (line 9)

- Error: Second structure in condition does not match pattern (line 9)

1 transformation

Terminated

7.4 Storing Transformations

Every template, expression and condition is stored in a node, with additional
fields if necessary. The first field in every node indicates what is stored in that

95

node. The second field is a pointer to the following node, so that templates
and conditions can be linked together into a list, as was done to store the
FORTRAN 77 program. Three dynamic 36 arrays are used as pointers to the
lists of the left- and right-hand-side patterns and the condition list respectively.
Every entry in these arrays corresponds to a single transformation. A stack
of nodes has been implemented to support the process of creating the data
structure for transformations. All type definitions required can be found in file
trafo.h, listed in appendix N, which must be included in all modules working
with this data structure. The actions to build the data structure are executed
again during the parsing phase, so some of the functions can be found in module
parser.y, while others are implemented in modules trafo.c and trafoapp.c,
listed in appendix R and S respectively.

The different templates are stored using the following fields per node (since
the 1ist template has been used to link patterns, it is stored implicitly in ‘next’
fields).

e DO-loop pattern Four extra fields are pointers to the representation of
the variable, lower bound, upper bound and stride expressions. Another
field contains a pointer to the pattern that describes the DO-loop body.

e Assignment pattern Two fields contain pointers to the representation
of the left- and right-hand-side expressions of an assignment statement.

e If pattern The first field is a pointer to the representation of the condi-
tion, while the second one points to the representation of the IF-body.

e Statement-pointer Variable One extra field is required, which contains
the number identifier of the variable.

e Nil pattern No additional fields are required.

The data structure of the DO-loop, assignment and IF pattern templates is
illustrated in the following picture.

FExpressions inside the patterns are either FORTRAN 77 expressions or ex-
pression pointer variables. Therefore, most expressions can be stored similar to
the way they were stored for FORTRAN 77 programs, while the data structure
for an expression-pointer variable contains the number identifier of the variable
in an extra field.

The data structures for the remaining constructions are described below.

e Merge Operator Two fields are used to store pointers to the represen-
tation of the patterns that must be merged during the application phase.

e Vectorize Operator One field contains the number identifier of the ex-
pression variable that must be vectorized, while the other fields are point-
ers to the variable that must be vectorized, the lower bound, upper bound,
and stride of that variable, respectively.

36 A dynamic array is used in order to be able to store any number of transformations.

96

Next B ...

//\

Var
Ex1,Ex2,Ex3
Body

DO-1loop

Assignment Ir

Figure 18: Template Data Structure

e Introduction Construction One field contains an entry in a dynamic
array of characters, while a second one contains the length of the identi-
fier stored at that place. Two fields can be used to store pointers to the
representation of the expressions that will be generated as subscript ex-
pressions or actual arguments, depending on the fact if an array variable,
or intrinsic function is introduced.

e Conditions The data structure of a nodep condition is as follows. One
field is used as entry into a dynamic array of characters of the direction
vector, while two others are used as entries in the same array to point to
the representation of the structures in an associated condition. The kind
of dependence is also stored in an attribute. The structures are stored
as strings, where .next is stored as a ‘n’, .dobody as a ‘d’, .ifbody as
an ‘1’, and .head as an 'h’ (so an empty string represents ‘$’, since all
structures start with a ‘$’). The data structure for true has no extra
fields.

7.5 Transformation Definitions

The patterns are described using the templates do for a serial DO-loop, doall
for a DOALL-loop, assign for an assignment statement and if for a general
or logical-IF statement. The templates are linked together using the templates
list, which is a single statement followed by a statement list (pattern). The
template nil can be used to specify an empty statement list, so it can be used
to match the end of a body or the end of the program. Whenever a whole
statement list must be matched without knowledge of the exact form that it
will have during the application phase, a statement-pointer variable can be used
at all places where a pattern is allowed. That variable will be bound to the
statement list at that place during the application phase, and can be used in
right-hand-side patterns again to indicate the insertion of that statement list
there. Because the environment of statements inside that list may change, and
duplicating rules are allowed (i.e. a statement-pointer variable appears more

97

Kind

m

Next = Next

Var_nr
Vecvar
vl,v2,v3

Entry, Len
Argl,Arg?2

Vectorize Function

Kind
Next

Flags
sll,sl2
kind

Condition

Figure 19: Remaining Data Structures

than once in a right-hand-side pattern), those lists will be copied whenever the
transformation is applied.

Expressions are described using the operators and constants of FORTRAN 77
or expression-pointer variables at the places where a binding must be created
during the application phase. If an expression-pointer variable is used more
than once in a left-hand-side pattern, the expressions used at all following places
where the variable occurs must be consistent with the binding created earlier.
Otherwise the pattern does not match. Note that this technique cannot be used
on statement-pointer variables. Multiple occurrences of expression-pointer vari-
ables in right-hand-side patterns will result in the duplication of the expression
bound to that variable. The routines for constant folding are not applied on
the resulting expression, to reflect the real transformation applied.

As an example, the following transformation defines the elimination of use-
less assignments from a program, since only assignment statements with the
same expression at both sides will match. The variable !sl is only necessary to
save the rest of the program, since transformations on single statements cannot
be defined with this transformation language. This variable will be referred to
as the ‘rest of program’ pointer, and as will be explained later on, its behavior
concerning copying is somewhat different from other variables.

98

transform

list(assign(!el, tel), !s1)
into

Isl
condition

true

3

Note that since expression-pointer variables can be bound to any kind of expres-
sion, the user must ensure that no non-variable expressions are introduced at
places where they are not allowed (i.e. in loop-control variable definitions, and
in left-hand-side expressions of assignment statements). To keep the language
flexible, no semantic checks are performed to prevent this from happening.
However, some checks are performed during the application phase (see section
8.5).

The structures in conditions point to specific statement lists in the left-
hand-side pattern. This is done starting at the begin of the matching program
fragment (indicated by a ‘$’) and using the constructions .next, .dobody, and
.ifbody to access the next statements or body of a DO-loop or IF statement
respectively. The following example illustrates how to use structures to specify
specific statement lists, in a program fragment that matches on the following
pattern.

list(do(l'el, 'e2, !e3, le4, 1list(if('e5, !s1), 182)), !s3)

It also illustrates the binding of the statement-pointer variables. The variable
Is3 is the ‘rest of program’ pointer. Since a body consists of a single state-
ment list, $.body.ifbody and 's1 for example, are only bound to the ‘...’
statements inside the IF body. All following statements are not visible.

$— DO I=1, 100
$.dobody — IF (L2) THEN
$.dobody.ifbody — e — Isl

ENDIF
$.dobody.next — ... — 1s2
ENDDO
$.next — ... «— 183

Note the difference between a pattern, that specifies the form of a program,
and a structure that is used to ‘enter’ the matching fragment during the trans-
formation application phase. The structures discussed so far can only specify
statement lists. Therefore, the construction .head has been implemented which
always occur at the end of a structure and indicates that only the first state-
ment of the statement list indicated by the structure preceding the .head must
be considered. Note that if this single statement is a DO-loop or an IF state-
ment, the statements inside the body are also considered (since they belong to
that single statement). So in the given example $.head specifies the DO-loop
with its body (consisting of the IF statement with its body and all statements
in the list bound to !'s2), while $ specifies this DO-loop with all statements

99

in its body and the following statement list (bound to !s3 and specified with
$.next).

The first structure associated with a nodep construction specifies the state-
ment list from which the source statements must be taken, while the second one
specifies the list from which the sink statements must be taken. A direction
vector must also be given, with a direction (‘<’, *>’, or ‘«’) for every loop-
control variable in common in the pattern (during the application phase the
surrounding loops not present in the pattern will be taken care of; see section
8.2).

A specification of variables on which the checking of dependences must be
done is optional and can be specified with > !e<num>. All variable names
that occur in the expression bound to the expression-pointer variable during
transformation application phase are extracted and used to examine only the
dependences caused by these variables. Note that this does not mean that the
dependence must also have the statement in which > !e<num> occurs as sink
or source statement, since only the names of the variables are used. This is
done because expression-pointer variables can occur in several statements (dis-
abling the uniqueness of the statement) and the specification of the sink/source
statement can be done with the .head construction.

As an illustration of the use of structures, the transformation ‘loop concur-
rentization’ is specified below.

transform

list(do (lel, 'e2, 'e3, led, 's1), !s2)
into

list(doall('el, 'e2, !e3, led4, !sl1), !'s2)
condition

nodep flow < ($.dobody,$.dobody) and
nodep anti < ($.dobody,$.dobody) and
nodep output < ($.dobody,$.dobody)

3

The three conditions state that, if no cross-iteration flow, anti or output depen-
dences from which the source and the sink statements are in the DO-loop body
hold, concurrentization of the loop is valid. Cross-iteration input dependences
are allowed, since they can be violated without affecting the semantics of the
program.

The merge operator can be used to merge two patterns into one which is
illustrated below in a transformation called ‘loop fusion’. In this transformation
the expression variables are used to check if the loop-control variables and its
bounds and stride are identical. The conditions express that no flow, anti or
output dependences may hold between statements in the first DO-loop body
and statements in the body of the second DO-loop.

transform

list(do('el, 'e2, !'e3, led, !'sl),

list(do('el, 'e2, 'e3, led, !s2), !s3))
into

100

list(do('el, !e2, 'e3, led, merge('sl, !s2)), !s3)
condition

nodep flow ($.dobody,$.next.dobody) and

nodep anti ($.dobody,$.next.dobody) and

nodep output ($.dobody,$.next.dobody)
Since this transformation has as goal to fuse consecutive DOALL-loops, to
minimize the startup and synchronization time needed, the patterns can better
be defined using doall templates, because otherwise the user is also asked in
some cases if two consecutive DO-loops must be merged from which one cannot
even be converted into a DOALL-loop.

The vectorize construction is used to convert expressions that are bound
to certain expression-pointer variables (the first argument of this construction)
into vector format, i.e. using subscript triplets. Occurrences in subscript ex-
pressions of the variable, bound to the expression-pointer variable that is given
as second argument are converted into the triplet specified as last argument
during the application phase. If that expression-pointer variable is not bound
to a scalar variable during the application phase an error is reported and the
transformation cannot be performed. The transformation ‘vectorization’ is de-
fined below. Note that the .head is not really necessary in this case, because
the left-hand-side pattern enforces the form of the DO-loop body to be a sin-
gle assignment. Formally this transformation is not correct, because the scalar
variable can have another value after the vector instruction in the resulting
program as a result from the fact that the DO-loop is eliminated, and this
value might be used by following statements. However, this detail is usually
ignored in vectorizing compilers since this value is seldomly reused. An extra
assignment after the vector instruction can solve this problem 37. To keep the
examples compact in this and the following examples this is not included.

transform
list(do('el, !e2, 'e3, 'ed, list(assign(l!e5, !e6), nil)),
into
list(assign(vectorize(l!eb | lel, l!e2:!e3:!ed),
vectorize('e6 | l'el, 'e2:!e3:'ed))
condition

nodep flow < ($.dobody.head,$.dobody.head)
The reason that no cross-iteration flow dependence is allowed results from the
hardware used to implement vector instructions, in which values recently writ-
ten may still be in the data stream where they are inaccessible.
The introduction of variable or intrinsic functions with arguments is illus-
trated in the following definition of ‘strip mining’.

3TA nodep clause on flow dependence on the loop-control variable between the DO-loop
and the ‘rest of program’ is insufficient, because it is not always the case that all following
statements are available with that variable. For example, in a match on a DO-loop in the
body of a surrounding DO-loop the ‘rest of program‘ is only bound to all following statements
in that body.

101

Isl)

transform

list(do('el, !e2, 'e3, 1, !sl1), !s2)
into

list(do(itemp, 'e2, !e3, 32,

list(do('el, itemp, min2(itemp + 31, !'e3), 1 , !s1) , nil)), !s2)
condition

true

3

Since itemp is not a keyword and it has no arguments, it is seen as a scalar
variable. Its type is determined according to the implicit data typing rules
(INTEGER in this case) and it is inserted in the symbol-table. The same is done
for min2, which is assumed to have dimension 2. If the variable is already present
in the symbol-table, it is determined if this type and dimension are consistent.
If this is not the case, the transformation cannot be applied. It is therefore
important to use identifiers that are not commonly used in programs. It is also
important to introduce consistent names, i.e. if the name itemp is used in more
than one transformation, it must always be used as a scalar variable, because
otherwise the second transformation cannot be applied, due to a dimension
conflict. This introducing technique can be used to introduce array variables
or intrinsic functions. In this case the intrinsic function min2 is introduced.
Array variables or intrinsic functions are stored in the symbol-table with the
dimension but without any bounds. In the generated program the declaration
INTEGER min2() will appear to reflect the fact that min2 is a function or array
of type INTEGER. In this way intrinsic functions are simulated for the resulting
code (while in fact they are always stored as array variables).

The transformation ‘loop distribution’ is described below, and illustrates the
need for the .head construction. It is specified for the case that the DO-loop
body starts with an assignment statement.

transform

list(do('el, !e2, 'e3, 'ed, list(assign(leb, leB), !s1)), !s2)
into

list(do('el, !e2, 'e3, 'ed4, list(assign(l!eb, !e6), nil)),

list(do('el, 'e2, !e3, led, !'sl1), !s2))
condition

nodep flow < ($.dobody.next,$.dobody.head) and

nodep anti < ($.dobody.next,$.dobody.head) and

nodep output < ($.dobody.next,$.dobody.head)

3

If the .head was not present, the following DO-loop could not be distributed
due to the dependence S26-Sy (remember that $.dobody alone indicates that
the sink statement must be in that statement list, which is { Si, So } in this
case). With the .head construction, the only allowed sink statement is Sq,
while $.dobody.next enforces the source statement to be S,.

L1: DO I =1, 100, 1

102

S1: B(I) = 10
S2: A(I) = A(T + 1)
ENDDO

The following transformation is used to convert a reduction operation into a
call to an efficient intrinsic function, and illustrates the use of the optional
specification of the variables used in considering the dependences.

transform
list(assign('el, 0.0),
list(do('e2, !e3, 'e4, leb,
list(assign(l'el, !el + le6 * !e7), nil)), !s1))

into
list(assign('el, dot(vectorize(!e6 | 'e2, !e3:l!led:!eb),
vectorize(le7 | !e2, le3:le4:1e5))), Isl)
condition

nodep flow < ($.next.dobody.head,$.next.dobody.head) > !e6
nodep flow < ($.next.dobody.head,$.next.dobody.head) > !e7

3

The application of this transformation is illustrated below. Since ‘vectorization’
is applied, a test must be performed whether no cross iteration flow dependences
hold. However, without the specification on which variables no dependence
may hold, the transformation would be useless, since a cross iteration flow
dependence on ASUM always holds.

ASUM
DO I 100

ASUM = ASUM + A(I) * B(I) >>> ASUM = dot(A(1:100:1),B(1:100:1))
ENDDO

0.0
1,

Note the use of the FORTRAN constant 0.0 of type REAL in the transformation
definition. The transformation definition can be made more general, by only
considering the reduction, so it will match on reduction with any start value,
as is illustrated below for a sum reduction.

transform
list(do('e2, !e3, 'e4, leb,
list(assign(lel, 'el + 'e6), nil)), !s1)

into
list(assign('el, l!el +
sum(vectorize('e6 | 'e2, !e3:'ed:1eb))), !'sl)
condition

nodep flow < ($.dobody.head,$.dobody.head) > !e6

3

Another reduction operation is the determination of the maximum value in an
array. The corresponding transformation is shown below, with an application.

103

transform
list(do('el, !e2, 'e3, 'ed, list(if(leb.gt.!eb,
list(assign('e6, 'e5), nil)), nil)), !'sl)

into

list(assign('e6, max2(!e6,

maxvec (vectorize(!'e5 | 'el, 'e2:!e3:'ed)))), !sl1)
condition

nodep flow < ($.dobody.head,$.dobody.head) > !eb

MAX = A(1)
DOI =1, 100, 1 MAX = A(1)

IF (A(I).GT.MAX) MAX = A(I) >>> MAX = max2(MAX,maxvec(A(2:100:1))
ENDDO

Consider the following DO-loops.

L1: DO I =1, 100. 1
L2: DO J =1, 100, 1
S1: A(I,J) = 100
ENDDO
ENDDO

It is well known that both DO-loops can be executed in parallel. However, with
the definition of ‘loop concurrentization’ given earlier, only the innermost loop
is converted into a DOALL-loop. This is a result from the fact that the depen-
dence Lgéng is computed prohibiting the concurrentization of the outermost
DO-loop. In fact this conclusion is correct, since complete concurrentization of
the outermost DO-loop requires 100 different local J variables. The following
transformation definition reflects this need by insertion of the ad hoc notation
J = local(J) and concurrentization of the outermost DO-loop.

transform
list(do(l'el, le2, 'e3, le4,
list(do('e5, !e6, 'e7, !e8, !s1), nil)), !'s2)
into
list(doall(lel, 'e2, '!'e3, 'e4,
list(assign('eb, local(!eb)),
list(do('eb5, !e6, 'e7, !e8, !s1), nil))), !s2)
condition
nodep flow <* ($.dobody.dobody,$.dobody.dobody) and
nodep anti <* ($.dobody.dobody,$.dobody.dobody) and
nodep output <* ($.dobody.dobody,$.dobody.dobody)

3

A transformation called ‘loop interchanging’ changes the order of nested DO-
loops with as goal to have the stride-1 loop-control variable in the innermost
DO-loop, with vectorization of that DO-loop in mind. The definition for ‘loop
interchanging’ with vectorization is given below.

104

transform
list(do('el, 'e2, 'e3, led, list(do('eb5, 'e6, 'e7, !e8,
list(assign('e9, '!'el0), nil)), nil)), !s1)

into
list(do('eb5, le6, 'e7, l!e8,
list(assign(vectorize(!e9 | lel, !e2:!e3:!ed),
vectorize('el0 | lel, 'e2:!e3:'ed4)), nil)), !'s1)
condition

nodep flow <> ($.dobody.dobody.head,$.dobody.dobody.head) and
nodep anti <> ($.dobody.dobody.head,$.dobody.dobody.head) and
nodep output <> ($.dobody.dobody.head,$.dobody.dobody.head) and
nodep flow <= ($.dobody.dobody.head,$.dobody.dobody.head) and

nodep flow ($.head,$.dobody.head) > 'el # second loop is independent

3

The first three conditions are necessary to check if the two DO-loops can be
interchanged. The fourth test determines if vectorization of the resulting in-
nermost loop is allowed (no cross-iteration flow dependence in one iteration of
the resulting outermost DO-loop). The last condition checks if the value of
the loop-control variable is not used in the bounds or stride of the innermost
DO-loop. Because it is also explicitly stated that the DO-loops are perfectly
nested, other changes to the value of the stride or the bounds of the innermost
(and outermost) DO-loop during all iterations are not accounted for. If the out-
ermost loop-control variable is used in the bounds of the innermost DO-loop,
a so-called triangular loop can result. The transformation ‘loop interchanging’
on a particular triangular loop is shown below.

transform

list(do(lel, 1, !e2, 1, list(do('e3, 1, lel, 1, !sl1), nil)), !s2)

into

list(do('e3, 1, 'e2, 1, list(do(lel, 'e3, l!e2, 1, !'s1), nil)),
condition

nodep flow <> ($.dobody.dobody,$.dobody.dobody) and

nodep anti <> ($.dobody.dobody,$.dobody.dobody) and

nodep output <> ($.dobody.dobody,$.dobody.dobody)

The last transformation in this section describes a transformation called
‘loop collapsing’. This transformation can be applied on two nested loops with
lower bound and stride equal to 1.

transform
list(do(lel, 1, 'e2, 1,
list(do('e3, 1, 'ed4, 1, !s1), nil)), !'s2)
into
list(do(itemp, O, 'e2 * led - 1, 1,
list(assign('el, div(itemp, '!ed) + 1),
list(assign('e3, mod(itemp, '!ed4) + 1), !s1))), !s2)

105

1s2)

condition
true

I

Since this transformation is required if the target machine only allows sim-
ple DOALL-loops, it is better to express the do templates in terms of doall
templates. This is because if the original transformation is applied first, the
subscript expressions inside the body can no longer be converted into normal
form, since they are not expressed in terms of a loop-control variable, possibly
resulting in the assumption of too many data dependences and therefore pro-
hibiting the conversion of the outermost DO-loop into a DOALL-loop. Note
that in this case the introduction of J = local(J) must not be performed,
since otherwise the patterns still do not match.

106

8 Transformation Application Phase

The transformation application phase is initiated with the command start from
within the interactive environment, after which the following algorithm shown
in a simplified version, will be executed.
forall transformations ¢t do
cs = give_program();
while (¢s # NULL) do
if match(t, cs) and cond_holds(t, cs) then
show_matching_fragment(cs);
new = compute_new_fragment(t);
show_new_fragment(new);
if accept_it() then
replace(new, cs);
cs = next_unmodi fiedstmt(cs);
else
cs = next_stmt();
end if
end do
if #transformations applied > 1 then
recompute_data_dependences();
end if
end do
If this algorithm has been executed for all transformations defined and some of
them have been applied the algorithm is restarted. The transformation appli-
cation phase terminates otherwise.

The function give_program() returns a pointer to the first statement of the
current program. This pointer is saved in the variable cs (current statement)
which is shifted over the consecutive statements with the function next_stmt()
until a matching fragment has been found. This shifting is done in such a way
that all statements are pointed to once in lexical order, as is illustrated with
the following program.

S1: R =10
L1: p0I1 =1, N, 1
Ci: IF (L2) S2: A(I) =R
C2: IF (L3) THEN
S3: A(I) = A(D) + 1
ELSE
S4: R=R + 1
ENDIF
ENDDO
S5: R=R + 1

The pointer will point to Sq, L1, Cq, So, Ca, S3, S4, and S5 respectively.
The following sections discuss the implementation of the other functions.
This implementation can be found in module trafoapp.c, listed in appendix S.

107

8.1 Determination of Next Matching Fragment

It is determined if the statement to which cs points is of the same kind as the
first statement described in the pattern of ¢. If that is the case, the expressions
and bodies of the statement in the program are matched against the corre-
sponding patterns of ¢. If a pattern consists of a description of a statement list,
consecutive statements in the program must match before a whole match can
be concluded. Whenever a statement pointer variable occurs in a pattern, it is
bound to the statement list currently matched against that pattern. Remember
that this is only done once for every separate statement pointer variable, since
it can only occur one time in the left-hand-side pattern of one transformation.
The representation of the last statement that is used in the match is stored in a
pointer endmarker. This pointer can be NULL 38 or point to a LINKUP data
structure, if the last ‘statement’ used in the match is the end of a statement
list (which matches on pattern nil or a statement-pointer variable). The ‘rest
of program’ pointer is set to NULL in those two cases.

The expressions in the program are matched against the patterns that de-
scribe the expression in a template, by checking if the same operators and
operands are used. Whenever an expression pointer variable occurs in a pat-
tern, it is bound to the expression currently matched when it is the first occur-
rence of that variable. Otherwise a check is performed whether the expression
currently matched is the same as the expression already bound to that variable.

The whole process is illustrated with the following example, in which the
matching fragment with the given pattern is determined.

L1: DOI =1+ 2Z, 100 + Z, 1
S1: A(I) = 200

ENDDO

S3: R = 300

list(do(1 + lel, 'e2 + lel, !e3, 1list(assign(led, 'eb), nil)), !sl1)

Suppose that ¢s points to L. Since a DO-loop matches on the kind of statement
described first in the pattern, matching the expressions is initiated. Pattern
1 + 'el matches on 1 + Z with 'el bound to Z. After that !'e2 is bound
to 100 and the binding of !el is checked against Z. Finally, !'e3 is bound to
1. Subsequently the body of the DO-loop is matched on the corresponding
pattern. This results in a match with !'e4 bound to A(I) and !'e5 to 200. Since
here the DO-loop body ends, and the description is nil, the match still holds.
Finally !'s1 is matched on Ss, after which the binding !'s1 (which is the ‘rest of
program’) points to S3. The algorithm concludes that a match has been found,
and returns the bindings together with endmarker, which also points to Ss.

8.2 Evaluation of Conditions

All conditions in a condition list must hold, before a transformation may be
applied. The separate conditions are evaluated as follows during the application

38This can only happen at the end of the program.

108

phase. Note that the true condition always succeeds. In case of the nodep
condition two pointers are set on the statements in the matching fragment,
according to the specified structures, by starting at cs, following the appropriate
pointers (n — next field, d — DO-loop body field, and i — IF-body field).
After that a function is called that determines if dependences of specified kind
and with given data direction vector can be found in the dependence table
with source statements in the statement list belonging to the first structure
and sink statements in the one specified by the second structure. In doing
so, care must be taken of the prefix of the data direction vector which is non-
empty if the matching fragment appears inside a DO-loop and has as length
the nesting depth of c¢s at that moment as is illustrated below. Assume that
during the application phase, cs points to Lo, and the transformation ‘loop
concurrentization’ is considered.

L1: DO I =1, 100
L2: DO J =1, 100
S1: A(I,J) = AT +1,J+ 1)
ENDDO
ENDDO

The DO-loop body of L1 matches on the pattern (cs points to Ly), but self de-
pendences of S are described with two direction flags, since minnest = 2 during
dependence analysis. The transformation for vectorization cannot anticipate all
possible surrounding nestings. This is, fortunately, even unnecessary, since as
long as the first DO-loop is executed serially cross iteration dependences cannot
be violated by a legal transformation on its DO-loop body as can easily be seen.
The only dependence in this loop: S0« «S; would prohibit vectorization if all
dependences would have been taken into consideration, although vectorization
of the J DO-loop is legal, since the flow dependence will not be violated due to
data pipelining as long as the I loop is executed serially.

So only dependences with a prefix of nest depth of ¢s ‘=" directions must be
considered in the condition evaluation. The comparison of the direction vector
specified in the transformation is done starting at position nest depth of cs +
1.

This evaluation is demonstrated for the condition nodep flow < (structl,struct2)
in which the statement lists defined by structl and struct2 are { L3 , Sy }
and { Sy } respectively, and for which the nesting depth of cs is 2.

‘ Dependences stored ‘ Action ‘ Comment ‘
S40<.— <S1 Ignore ‘<’ direction at first position
845:7:7<83 Ignore 83 Q { 81 }

Lid——<S1 Ignore Not a flow dependence
S40—— <S1 Test Fails | Search terminates

If the optional specification of variables on which the dependences consid-
ered is given, all variable names that occur inside the expression bound to the
given variable are extracted and used as a filter on the process described above

109

(i.e. the action Ignore is performed if the variable stored with the dependence
is not an element of this list).

Only if the whole table can be scanned, without encountering a dependence
that satisfies the given specification in the nodep (so action Ignore is performed
on every entry), the associated transformation can be applied. Since this table
is scanned in a linear fashion, condition evaluation can be quite expensive in
case of many assumed dependences. Therefore, an optimization in evaluation
time can be achieved by using a more sophisticated data structure to store data
dependences.

Now it is clear, why extra functions were implemented to determine the
directions for trailing ‘=" directions, since these dependences are crucial for the
success or failure of the condition evaluation inside the innermost loops. Less
effort is required for dependences with a trailing ‘<’ direction, since they are
only important for the outermost loop.

8.3 Presentation of Matching Fragment

If a matching fragment is found and all conditions hold, the matching fragment
is presented to the user by listing all statements between cs and endmarker
after the header ** MATCH ON. The statements in the list pointed to by the
statement pointer variable bound to the ‘rest of program’, are not listed. The
string ‘. ’ is shown instead if this list is non-empty to prevent large state-
ment lists, not really involved in the match, from being listed. The functions
implemented in module show.c can be used for this purpose (see section 9).

8.4 Computation of Resulting Fragment

The resulting fragment is specified in the right-hand-side of the current trans-
formation. The computation of this fragment is done using the statement stack
(discussed earlier) on which pointers to the data structures of new statements
are pushed. After this these data structures can be linked together. Expressions
that must appear in the new statements are also specified in the structures and
after a new expression has been computed, a pointer to its data structure is
pushed on the expression stack. In this fashion the expressions can be passed
to the statement building routines. Since this method is the same as the one
used during the initial creation of the program data structure, all the routines
of module struct.c can be used.

Because new normal forms must be computed as explained below, the en-
vironment of the cs must be available before the computation of the new frag-
ment start, and must be maintained during all different actions presented below.
The actions that must be taken for every different element inside a right-hand-
pattern are given in the following sections.

8.4.1 Templates

The statement templates directly specify which kind of statement must be cre-
ated, so the only thing that must be done, is the creation of the expressions
and a possible body specified in the template itself. After this the appropriate

110

routines can be used. Since the template 1ist is only implicitly present in the
data structure of templates (the templates have been linked together), it can
be implemented by linking the resulting statements on the statement stack to-
gether. The pattern if always results in the creation of a general-IF statement,
because the generation of a logical-IF statement would require examination of
the body (this must be a single statement). Because inside a DO-loop body the
environment changes, it must also be maintained during the creation of a DO-
loop (this requires a check on the expression appearing as loop-control variable,
see section 8.5). Remember that the creation of a DO-loop or IF statement
automatically inserts a LINKUP data structure.

8.4.2 Statement Pointer Variables

Routines are called that copy all statements with their expressions found in
the list pointed to. A pointer to the first statement in that list is pushed on
the stack. This copying is done, in contrast with just pushing the pointer
on the statement stack, because statement pointer variables can be used to
duplicate statements. This requires different copies to be made, since later
transformations can be applied differently on both version. Besides that, the
nesting depth of statements inside that list may change, so the normal form of
all subscript expressions must be recomputed using the current environment,
requiring a pass over all statements and expressions anyway. Another reason is
the fact that garbage collection can be done more easily since one of the two
fragments (old one or resulting one) can be eliminated from memory, without
the danger of overlapping data structures. All statements that result from
this copying receive their own number, to distinguish them from the original
statements.

An exception to this copying is whenever the ‘rest of program’ pointer ap-
pears at the end of a resulting pattern, which is the last pattern in the outermost
list template or the second argument of the merge construction at that place.
In this case it is only specified that the resulting fragment precedes the ‘rest of
program’ fragment, which is a result of the fact that the transformation lan-
guage operates on statement lists instead of single statements. Copying the ‘rest
of program’ in that case would result in expensive and unnecessary duplication
of usually long fragments. Therefore, it is decided not to copy that fragment
but simply to push the ‘rest of program’ variable on the stack. All occurrences
of the ‘rest of program’ pointer at other places, however, are handled as normal
variables, i.e. copying is applied.

Since new DO-loops and IF statements are created, the LINKUPs inside
these bodies are correctly added. It is, however, possible that a single LINKUP
data structure appears at the end of the list that must be copied. This LINKUP
is naturally not copied, but converted into a NULL pointer. How this LINKUP
is recovered is explained in section 8.7.

Logical-IF statements are not converted into General-IF statements, because
it is known that the body will consist of a single statement.

The data structure of the resulting fragment will be of the following form
(in which ‘rest of program’ can also be NULL).

111

New Fragment
Figure 20: Resulting Fragment

8.4.3 Expressions

Constants and operators specified in a pattern can be created and pushed on
the expression stack after evaluation of the operands in the last case. Every oc-
currence of an expression pointer variables requires the copying of the whole ex-
pression because the normal form of all subscript expressions of array variables
must be recomputed, and simple garbage collection demands non-overlapping
data structures.

8.4.4 Merge Operator

The statement lists specified in the arguments of this operator are created first,
after which the tail of the first one is linked to the head of the second, and a
pointer to the head of the first statement list is pushed on the stack. If the
first argument specifies an empty statement list, only the second statement list
is pushed on the statement stack. Remember that if the second argument of
the merge operator is the ‘rest of program’ pointer, the copying mode must be
disabled.

8.4.5 Vectorizing Operator

All occurrences of the scalar variable bound to the expression-pointer variable
(which will be referred to as the vector variable) given as second argument of
the vectorize operator, in subscript expression in the expression specified by
the first argument, are replaced with vector triplets. All other expressions are
unchanged. This may result in strange fragments as in the following example.

DO I =1, 100
ACI) = ACD) + I >>> A(1:100:1) = A(1:100:1) + I
ENDDO

This is, however, not considered to be a problem, since there is no syntactical
convention to describe the vectorization of this loop, and the user can detect
the incorrect syntax.

The lower bound, upper bound and stride that must be used in the resulting
vector triplets are determined and evaluated. After that the values are type
converted to INTEGER if necessary. Note that the lower bound and upper
bound can be determined by evaluating the subscript expressions in which all

112

occurrences of the vector variable are replaced by the bounds found in the
vector triplet specified in the operator. The determination of the stride requires
multiplication of the sum of all coefficients of the vector variable inside the
subscript expressions with the stride given in the triplet. The following example
illustrates the vectorize operator: vectorize('el | 'e2, 1:100:2), with
lel bound to A(2*I+I+1) and 'e2 bound to I, results in A(4:301:6). Some
exceptions can occur during the evaluation of this operator. These are given in
section 8.5.

8.4.6 Introduction Construction

The type of the identifier used is determined with the implicit data typing rules
of FORTRAN 77. After that the symbol-table is checked if the identifier has
already been defined. If this is the case the transformation can only be applied if
the type and dimension found there are consistent with the type and dimension
in this transformation. If the identifier has not been set, the symbol-table is
updated with the new identifier. In case of an array variable, no bounds are
stored to indicate the fact that it is unknown if a variable or intrinsic function
is meant. Note that, if the transformation is not applied, all identifiers inserted
in the symbol-table by this transformation must be deleted.

8.5 Checks Performed during Transformation Application Phase

Although few restrictions on the transformation language are desirable, some
run time exceptions are necessary to prevent incorrect use of the transformation
language. This means that the transformation is shown (as far as possible
under the exception), but cannot be applied. A message is given to the user,
to explain the cause of the exception. The transformation application phase
continues after the exception, as if the application of this transformation was
denied by the user.

Since no checks are performed on expression pointer variables, it is possible
to introduce all kinds of expressions on the right-hand-side of assignment state-
ments and DO-loops. This can result in incorrect programs since it is possible
to create the assignment 3 = R. All routines for data dependence analysis are
implemented in such a way that this will not cause any problems (the OUT set
is considered to be empty). Introducing a non-scalar variable as loop-control
variable, however, cannot be tolerated, since this causes problems in the en-
vironment maintenance. Therefore, an exception is generated if this is done.
During the evaluation of the vectorize operation, an exception is generated in
one of the following cases.

1. The vector variable is a non-scalar variable.
2. The vector variable occurs inside a vector triplet.

3. The stride cannot be determined because the subscript expression is too
complicated 3°.

39Tn this case, the stride is set to 0.

113

4. The vector variable occurs in more than one subscript.

The second case prohibits vectorization because it is not always possible to
vectorize inside a vector as is explained with the following nested DO-loop. In
this case the I DO-loop cannot be vectorized, since the stride S is unknown.

DO I =1, 100, S

DO J =1, 100 b0 I =1, 100, S
A(J+I) = <expr> >>> A(1+4I:100+4I:1) = <vecexpr>
ENDDO ENDDO
ENDDO

In the last case vectorization would result in incorrect code as is illustrated
below. The resulting code has quite different semantics than the original DO-
loop.

DO I =1, 100
A(I,I) = 100 >>> A(1:100:1,1:100:1) = 100
ENDDO

As stated before, an exception is also generated whenever a variable or function
is introduced with inconsistent type or dimension.

8.6 Presentation of Resulting Fragment

The resulting fragment can be presented to the user in the same way as the
matching fragment was shown, but now with as header ‘** TRANSFORM INTO’
Again, a non-empty trailing ‘rest of program’ is shown as , although
occurrences inside the resulting fragment are listed as a whole, since all state-
ments in the statement list pointed to by the ‘rest of program’ variable have
been copied and inserted in that case.

8.7 User Response Processing

After the matching and resulting fragment have been shown, the user is asked if
this transformation must be applied. The following responses are possible (up-
per case characters are also allowed, all other inputs are seen as a ‘n’-response).

e ‘y’: Apply this transformation.
e 'n’ : Do not apply this transformation and continue.

e 'q’ : Do not apply this transformation and continue with the next trans-
formation.

e ’¢’ : Do not apply this transformation and exit the transformation appli-
cation phase.

Note that the processing of some of these responses are not reflected in the
algorithm listed in section 8 to keep the presentation simple. If the transforma-
tion must not be applied, the recent computed fragment is deleted from memory,

114

and the transformation application phase continues as specified above. Since
this fragment always ends with a NULL pointer or with the ‘rest of program’,
the statements that must be deleted can be easily determined. The counters
that administrate the current statement number of any kind are recovered and
all symbols that have been inserted in the symbol-table by this transformation
are deleted.

If the transformation must be applied, one of the following four insertions
must be performed. For these insertions a pointer prev is required, which keeps
track of the statement before cs. In case that cs is the first statement of a
DO-loop or an IF body, prev points to the data structure of that DO-loop or
IF statement. The prev pointer is maintained during the algorithm of section
8.

e Program Insertion If prev = NULL, the transformation is applied on
the first statement of the program, so the pointer that keeps track of this
statement must be set to the new fragment.

e Normal Insertion The new fragment must be inserted after prev, so
the next field of the data structure pointed to by prev is set on that
fragment. If the new fragment continues in the ‘rest of program’, the
possible following LINKUP will be presented in the resulting program.
So no LINKUP recovery is necessary. This kind of insertion is shown in
the following picture.

rest of program

f f

prev i cs endmarker

new connection

new fragment

Normal Insertion

Figure 21: Program Insertion with LINKUP Recovery

If, however, the new fragment does not use ‘rest of program’ or this pointer
is NULL because endmarker points to a LINKUP, a possibly following
LINKUP will be detached from its corresponding DO-loop or IF state-
ment. Therefore, the old fragment is scanned, starting at endmarker, un-

115

til a LINKUP data structure is encountered (or ‘rest of program’/NULL 4°
which indicates that a ‘normal insertion’ without recovery can be done).
The body of the statement pointed to by this LINKUP will contain the
new fragment. So a LINKUP data structure can be added to recover the
total data structure. This process is illustrated in the next picture.

rest of program

*

— —_— —_— —_— —_— -
prev [/ cs endmarker weben .
— — ——= NULL |

new fragment

Normal Insertion (with LINKUP revovery)
Figure 22: Program Insertion

e DO-loop body Insertion The DO-loop body field of the data structure
pointed to by prev is set to the new fragment. Since again a LINKUP data
structure can be detached if the new fragment does not use a non-empty
‘rest of program’, the same actions as given above are performed. This
kind of insertion is illustrated in the following picture. Note that since
endmarker points to a LINKUP, the ‘rest of program’ is NULL. This is
because from within the body no following statements are seen. Although
this ‘rest of program’ is used in the new fragment, it would result in the
loss of a LINKUP data structure without the actions given.

e IF-body Insertion The IF body field of the data structure pointed to
by prev is set to the new fragment. The old fragment is also considered
starting at endmarker to recover from a possibly lost LINKUP. The case
that this recovery is not necessary is shown below. If the insertion is done
in a Logical-IF statement, it is converted into a General-IF statement,
because the number of statements is the transformed body may change.

After the insertion has been done, cs is set to the first statement that has not
been considered yet, and for which the old data dependences hold (remember
that new data dependences are only computed after every pass). This statement

49This can happen at the end of the program.

116

prev

v

—>‘,'\ = —_— —_— R —_— o
o *—_—_:_———t:::::> rest of program
— —_— 1T eeemmet —_— NULL
. CS ceeremmmmeeee endmarker new connection
—e — i new linkup

new fragment R

DO-loop body Insertion

Figure 23: DO-loop body Insertion

can be found using the process described above, that starts scanning from the
endmarker pointer. If this scanning ends in a LINKUP data structure, prev is
set to the DO-loop or IF statement pointed to by this LINKUP and cs is set to
the following statement, since the exploration of the body has finished. If this
scanning ends in a NULL pointer, the end of the program has been reached.
Otherwise the scanning ends in a non-empty ‘rest of program’, after which prev
is scanned forwards until the following statement is ‘rest of program’ in case cs
was at the same level as prev. After that, cs is set to ‘rest of program’. If prev
points to a DO-loop or IF-statement from which the body contained cs, it is
determined if ‘rest of program’ is at the beginning of the body. If this is the
case prev is unaltered. Otherwise the body is scanned to find the statement
before ‘rest of program’, to which prev is set. In both cases, c¢s is set on ‘rest
of program’. If prev was NULL, the first statement of the program has been
changed, and the statement before ‘rest of program’ must be searched. If the
program begins with ‘rest of program’, prev remains NULL.

Finally the statements in the old fragment must be deleted from memory.
This can be done by removing the pointer that points to endmarker (marked
with a ‘«” in the pictures) and deleting the old statement list. The algorithm
continues as explained above after these adjustments.

As a last remark it must be stated that if the left-hand-side pattern of a
transformation only consists of the template nil, this will match on all empty
statement lists in bodies of DO-loops and IF statements, except the empty list at
the end of the program, since the algorithm terminates whenever cs = NULL.
Because all transformations of this form are very artificial, this is not considered

117

prev

v

\ —_— —_— —_— —_—
S
—_— —_— — .
new connection

f b T

endmarker/rest of program

CsS

new fragment

IF body Insertion

Figure 24: IF-body Insertion

to be a problem.

8.8 Adaptations to other Modules

The routines that compute data dependences must be adapted, since the re-
sulting code can contain DOALL-loops, vector instructions, and new vari-
ables/functions. The DOALL-loops are handled as normal serial DO-loops.
i.e. the cross-iteration dependences are generated as if the loop was executed
serially. The bounds and stride of vector triplets that are used as subscript
expressions in array variables are not used in the dependence computation. So
it is assumed that all elements are used, as is illustrated below.

L1: DO I =1, 100

S1: A(I) = 100 S3: A(1:100:1) = 100
ENDDO >>>
L2: DO I = 101, 200

S2: A(I) = 200 S4: A(101:200:1) = 200
ENDDO

Before the two DO-loops are converted into vector instructions no dependence
is assumed, but in the resulting fragment the dependence S369S, is assumed.
Therefore, it is recommended to apply vectorizing transformations after all
other transformations.

The functions used to generate the symbol-table and the program listing
must be adapted to handle intrinsic functions or array variables of which the
bounds are unknown. Note that if transformations are applied, new files for the

118

symbol-table and program listing must be generated to keep these consistent
with the current program in memory.

8.9 Example of Interactive Restructuring

This section shows some simple sessions to illustrate the interactive way in which
restructuring is applied. Consider the following program with four loops and the
definitions for the transformations for ‘concurrentization’ and ‘vectorization’,
given in the previous section.

L1: DOI =1, 100, 1

S1: A(<I>) = (A(<I>) + 1)
ENDDO
L2: DO I =2, 100, 1

S2: A(<I>) = (A(<I-1>) + 1)
ENDDO
I3: D0I =1, 99, 1

S3: A(<I>) = (A(<I+1>) + 1)
ENDDO
I4: DO I =1, 50, 1

S4: AC <I>) = ((AC <2%I>) + A(<2%I>)) + 1)
ENDDO

In the following session all vectorizing transformations are chosen. Since the
dependence S10.S4 holds in the second DO-loop, this loop cannot be vectorized.
Only the first DO-loop matches the transformation into a DOALL loop, because
the only dependence is S19-S,.

————————— Transformation 1 --——-—----—-
*x MATCH ON
L1: DOI =1, 100, 1
Si: A(I) = (A(D) + 1)

** TRANSFORM INTO
L5: DOALL T =1, 100, 1
S5: A(I) = (A(D) + 1)
ENDDOALL

**x ACCEPT (y/n/q/e) ===>n

The transformation phase starts with transformation 1, which is ‘loop concur-
rentization’. The first loop (L1) can be converted into a DOALL-loop. A new
DOALL-loop is created (Ls) and the body of the old loop is copied (resulting
in assignment S5, identical to S1). The ‘rest of program’ variable points to Lo,
but it is shown as dots. The transformation is not applied, since ‘n’ is given as
response.

119

————————— Transformation 2 --—-------—-

**x MATCH ON
L1: DO I =1, 100, 1
S1: AC(I) = (A(D) + 1)
ENDDO

**x TRANSFORM INTO
85: A(1:100:1) = (A(1:100:1) + 1)

x ACCEPT (y/n/q/e) ===>y

No other loops can be converted into DOALL-loops, so the transformation phase
continues with the following transformation ‘loop vectorization’ and starts at
the begin of the program again. Since S5 of the previous transformation has
been deleted from memory, its number can be used again.

**x MATCH ON
L3: DO I =1, 99, 1
S3: A(I) = (AT + 1)) + 1)
ENDDO
**x TRANSFORM INTO

S6: A(1:99:1) = (A(2:100:1) + 1)
ACCEPT (y/n/q/e) ===>y
MATCH ON
L4: DO I =1, 50, 1
S4: A(I) = (AT + I)) + AC(2 *x I))) + 1)
ENDDO
x*x TRANSFORM INTO
S7: A(1:50:1) = ((A(2:100:2) + A(2:100:2)) + 1)

*

*

*

*

**x ACCEPT (y/n/q/e) ===>y
Computing Data Dependences
skkkkkkk New Pass sokkkokkokk

————————— Transformation 1 --——------—-
————————— Transformation 2 --——------—-

Number of transformations applied: 3

After all loops have been vectorized, new data dependences are computed and
the algorithm starts again with transformation 1. Since there are no more
matching fragments, the algorithm terminates and reports the number of trans-
formations applied.

120

In the following session, ‘loop collapsing’ and ‘strip mining’ are illustrated
on a nested DO-loop.

————————— Transformation 1 -—-———-—-—--
** MATCH ON
Li: DO I =1, 100, 1
L2: D0 J =1, 100, 1
S1: A(I,J) = 10.000000
ENDDO
ENDDO
TRANSFORM INTO
L3: DO itemp = 0, ((100 * 100) - 1), 1
S2: I = (div(itemp,100) + 1)
S3: J = (mod(itemp,100) + 1)
S4: A(I,J) = 10.000000
ENDDO
*x*x ACCEPT (y/n/q/e) ===>n
————————— Transformation 2 -—-———-—-—--
** MATCH ON
Li: DO I =1, 100, 1
L2: b0 J =1, 100, 1
S1: A(I,J) = 10.000000
ENDDO
ENDDO
TRANSFORM INTO
L5: DO itemp = 1, 100, 32
L4: DO I = itemp, min2((itemp + 31),100), 1
L3: DO J =1, 100, 1
S2: A(I,J) = 10.000000
ENDDO
ENDDO
ENDDO

*xx ACCEPT (y/n/q/e) ===> e

*

*

*

*

As a last example, a session is shown in which a reduction operator is generated
from a DO-loop. Parts of the symbol table and the resulting program are also
listed to demonstrate the way in which the intrinsic function is represented.

=> start
————————— Transformation 1 --——-—----—-
**x MATCH ON
S1: PT = 0.000000
L1: DO I =1, 100, 1
S2: PT = (PT + (A(I) * B(D)))

121

**x TRANSFORM INTO
83: PT = dot(A(1:100:1),B(1:100:1))

x ACCEPT (y/n/q/e) ===>y

REAL A(1:100)
REAL B(1:100)
REAL PT

REAL dot ()

83: PT = dot(A(1:100:1),B(1:100:1))

Id Dim Type Value Bounds

A 1 REAL - (1:100)
B 1 REAL - (1:100)
PT Scalar REAL -

dot 2 REAL -)

8.10 Some Results on FORTRAN 77 Programs

The prototype compiler is tested on two FORTRAN 77 programs, using the
transformations given in the previous sections.

For a program that performs block LU factorization, found in [Bik91], the
compiler can be compared with commercial compilers such as KAP and VAST.
All DOTPRODUCT operations are recognized and the same DO-loops are con-
verted into DOALL-loops or vector instructions. Some additional transforma-
tions were applied by KAP and VAST using the WHERE construction not yet
accounted in the transformations specified. The collapsing of nested DOALL-
loops which can be done by the prototype compiler, however, was not performed
by these compilers. The prototype compiler applied ‘loop interchanging’ in more
cases than VAST did, and performed comparable with KAP.

Of course, these simple programs cannot be considered as serious bench-
marks. However, some of the features of the different compilers can be com-
pared. A more elaborate study is planned to investigate the effectiveness of the
different approaches.

122

9 Unparsing

This section discusses the unparsing phase, implemented in module show.c,
which is listed in appendix Q. This module can be used, whenever the user
wants to examine the program stored in memory. So after the program has been
read or the transformation phase is terminated, the routines of this module are
used to enable the user to examine the results so far. The user can write the
program to a file in a format that can be presented to a compiler (so without the
statement labels and subscript expressions in normal form) using the command
save. The routines in this module are also used to show the matching and
resulting program fragments on the terminal, during the transformation phase.

Since most of the resulting code is FORTRAN 90, the syntax of this language
is used. But some FORTRAN 77 constructions are used (e.g. continuations),
which is possible, since FORTRAN 90 is downwards compatible. The inden-
tation of all statements is initially 6 spaces, and is increased inside bodies to
improve readability. If text appears after the 64" column, the text is cut off,
and a continuation is used, to prevent the text from exceeding the 72" column.

9.1 Program Header

First the keyword PROGRAM followed by the identifier found in the original pro-
gram is listed, followed by a newline, and a blank line.

9.2 Declaration Statements

The information found in the symbol table of every variable is converted into
a declaration statement and listed on separate lines. Array declarations are
presented using subscript ranges with explicit lower bound. So, the declaration
of an array REAL A(100) is converted into REAL A(1:100). Parameter vari-
ables are not listed in the resulting program, because constant folding has
eliminated all the occurrences of these variables. This affects the flexibility of
the resulting FORTRAN 90 code, so adaptations to the program can be more
easily done in the original program. The declaration statements are separated
from the rest of the statements by a blank line.

9.3 Statements and expressions
The unparsing rules for the different statements and expressions are discussed
in the following sections.

9.3.1 DO-loop/DOALL-loop statements

These statements are listed using the keywords DO(ALL) and ENDDO (ALL), elim-
inating the need for labels. The statements inside the body of every loop are
indented two spaces. Depending on whether a listing for the user or for the
compiler is generated, the loop label can be listed.

123

9.3.2 Assignment statements

Assignment statements are presented on a single line possibly preceded by the
assignment label.

9.3.3 Logical-IF statements

A logical-IF statement is listed on a single line possibly with its condition
label, followed by the statement in its body. If this statement is an assignment
statement, the label of this statement is also listed if necessary, as is shown
below.

Ci: IF (L1) S1: R=R + 3

9.3.4 General-IF statements

General-IF statements start with the keywords IF (<condition>) THEN pos-
sibly preceded by the condition label, in which the condition is listed using
the unparsing rules of section 9.3.6. The statements inside the branches of a
general-IF statements are indented two spaces. All the following ELSE IFs and
the last ELSE are listed in the same column as the opening IF keyword, with
their associated condition labels if required. Finally the keyword ENDIF is listed.

9.3.5 STOP statement

This statement is simply listed on a single line.

9.3.6 Expressions

Expressions are listed according to the following rules.

e Operators: Arithmetic operators are listed with one space at each side
to improve readability of arithmetic expressions. All other operators are
listed without spaces, since the two dots separates the operator from its
operands (as in 3.NE.2). All expressions with operators are annotated
with brackets to reflect the priority. So, the following expression R = R
+ 10 * RislistedasR = (R + (10 * R)). Even the single operand of a
unary operator is surrounded with brackets.

e Constants: Constants can simply be listed. Logical values are shown as
.TRUE. or .FALSE..

e Variables: The name of the variable is listed. The subscript expressions
of array variables are shown in their normal form, with enclosing < ... >
notation, if a listing for the user is generated. The original subscript
expressions are used otherwise.

e Vector Triplets: These are listed by showing the lower bound, upper
bound, and stride expressions, separated by a ‘:’.

124

9.3.7 End of Program

At the end of a program a blank line is generated, followed by the keyword END.

9.4 Example of unparsing

The following program is entered into the restructuring compiler, and shown
below once it is read. Note that the prototype compiler acts as a ‘pretty printer’,
since the layout of the original program has been discarded.

PROGRAM SHOW
INTEGER I, N

PARAMETER (N = 100)
LOGICAL L

REAL R, A(N)

R =5.0

L = (3 .NE. (6 + 2))
DO 10 I =1, N, 1

A(I) = 10.0 + R * 5.0

10 CONTINUE

IF (L) R =R + 2

IF (L) THEN

R= 2.0

ELSE IF (L .NEQV.
+ .TRUE.) THEN

R = 3.0

ENDIF

STOP

END

The array declaration of A has been changed. The statements are annotated
with their labels, the expressions with brackets, and the subscript expression
inside DO-loop 10 is shown in normal form. Parameter N has been eliminated.

PROGRAM SHOW

INTEGER I
LOGICAL L
REAL R
REAL A(1:100)

S1: R = 5.000000
S2: L = .TRUE.
Li: DOI =1, 100
S3: A(< I>) = (10.000000 + (R * 5.000000))
ENDDO
Cl: IF (L) S4: R = (R + 2)
C2: IF (L) THEN
S5: R = 2.000000

125

C3: ELSE IF ((L.NEQV..TRUE.)) THEN
S6: R = 3.000000

END TIF

STOP

END

126

10

Future Research

During the implementation of this prototype compiler some topics were left
unexamined, and should be included in future research. This section enumerates
some of those topics.

The user-defined transformations are examined sequentially. It is still
an open question in which order the transformations must be applied to
achieve the best possible code. If such an order can be found, another
question is how this must be specified in the transformation language.
One possible way could be the use of a finite state machine.

The transformation language has some inaccessible macros (merge and
vectorize). The language can be made more powerful by enabling the
user to define its own macros. One possible way to do this could be the
extension of the language with user defined functions.

The expression-pointer variables can only be bound to whole expressions.
In some case it could be convenient if also access to the subscript expres-
sions would be possible.

The prototype compiler can only be used on a subset of FORTRAN 77.
An extension to whole FORTRAN 77 would be a nice improvement, but
requires more powerful techniques such as interprocedural analysis.

The transformation language can only define program transformations,
with a few side-effects on the data structure (introduction of new vari-
ables). Research on data structure transformation will result in the need
for a more powerful transformation language.

The conditions of every transformation can only enforce that certain de-
pendences do not exist. Conditions on the value of variables, tests on
variables if they are constants or variables, tests on the number of under-
lying dependences or global conditions are necessary to make the language
more powerful.

Better techniques for data dependence analysis can result in better ex-
ploitation of potential parallelism.

More interaction with the user can result in better code. An idea is to use
a new kind of variables for expressions (e.g. ?7e11) which ask the user to
enter a certain expression *!. The user can decide to enter the best value
for this expression, eliminating the need to anticipate all possible values
in the transformation definitions.

4n strip mining, for example, the best vector length can depend on different factors not
accounted for in the transformation.

127

References

[ASUS6]

[Banss]

[BGA90)

[Bik91]
[ETW92]

[KF90]

[Pol8s]

[Wolg9]

[ZC90]

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers Prin-
ciples, Techniques and Tools. Addison-Wesley, 1986.

Utpal Banerjee. Dependence Analysis for Supercomputing. Kluwer,
Boston, 1988.

W.S. Brainerd, Ch.H. Goldberg, and J.C. Adams. FORTRAN 90.
Academic Service, 1990.

Aart J.C. Bik. Program restructuring. INF/VER-91-19, 1991.

C. Eisenbeis, O. Temam, and H. Wijshoff. On efficiently character-
izing solutions of linear diophantine equations and its application to
data dependence analysis. In Proceedings of the Seventh International
Symposium on Computer and Information Sciences, 1992.

Koffman and Friedman. Problem Solving and Structured Program-
ming in FORTRAN 77. Temple University, 1990.

Constantine D. Polychronopoulos. Parallel Programming and Com-
pilers. Kluwer, Boston, 1988.

Michael J. Wolfe. Optimizing Supercompilers for Supercomputers.
Pitman, London, 1989.

H. Zima and B. Chapman. Supercompilers for Parallel and Vector
Computers. ACM Press, New York, 1990.

128

A The Interactive Environment

This appendix contains all commands that can be given from within the interac-
tive environment, with their meaning and an explanation of all possible system
responses. When the environment is entered from UNIX with the command
f2f, the following message is generated before the prompt ‘=>’ is shown.

sk sk sk ok ok s ok ok ok sksk ok ok sk ok sk ok sksk sk ok sk ke sk sk sk ok sk sk sk e ke sk sk sk sk sk ok sk sk sksk sk sk ok sk sk sk sk sk ok
*%x*x FORTRAN 77 to FORTRAN 90 Restructuring Compiler ***

**x*x Written by Aart J.C. Bik *ok ok
*** under supervision of dr. H.A.G. Wijshoff *okx
*x*x UNIVERSITY OF UTRECHT 1991/1992 *okok

>k 3k 3k 5k >k 3k 3k 5k >k 3k 3k 3k >k %k 5k 3k >k %k 3k 3k 5k %k 5k 3k 5k %k 5k %k 5k 3k >k >k 5k >k 3k 5k >k >k %k 5k >k >k >k %k %k 5k >k %k >k %k %k >k *k k %k

e dep This command switches between the different modes of dependence
generation. The selected mode is listed.

e exit This command quits the interactive environment. A bye message is
listed.

e help This command generates a listing of all possible commands.

e nowarnings This command disables the generation of warning messages
during semantic checking of FORTRAN 77 programs. The message Warnings
disabled is listed.

e readprg < filename > This command reads the FORTRAN 77 file found
in the argument given. If an incorrect argument is given, the message
*xx Bad file name filename is listed. If no program is read due to an
error, the message Terminated is generated. All other error and warning
messages generated during the different phases are listed in the appendices

B and C.

e readtrf < filename > This command reads the transformation file found
in the argument given. If an incorrect argument is given, the message **x*
Bad file name filename is listed. If no transformations are read due to
an error, the message Terminated is generated. Other errors generated
during the semantic checking of a transformation file are listed in appendix
D.

e save < filename > This command writes the current 42 program to a file
with as name the argument given. If no program is present, the message
No program to save is listed.

e showdep This commands shows all static dependences found in the cur-
rent program and saved in the file program.dep using the UNIX command
less. The message No Dependences is listed if no program is present, or
the current program is dependence free.

42When a program is correctly stored in memory, it is said to be the current program.

129

e showprg This program shows the current program which can be found
in the file program.tzt using the UNIX command less. The message No
Program in memory is listed otherwise.

e start This command starts the transformation application phase. If no
current program is present, the message No program present to transform
and if no transformations are present, the message No transformations
in memory is listed.

e symtb This program lists the symbol table of the current program using
the UNIX command less, which can be found in the file program.sym
if one is generated. The message Empty is generated otherwise.

e vi < filename > This command calls the vi editor of UNIX with the
argument given.

e warnings This command enables the generation of warning messages dur-
ing semantic checking of FORTRAN 77 programs. The message Warnings
enabled is listed.

B Error Messages (F77)

In this appendix all the possible error messages of the FORTRAN 77 dialect
parser are listed, together with a short explanation of their cause. Only syn-
tax errors generated by the YACC-generated program will result in immediate
termination of the parsing phase. All others errors are reported but parsing re-
sumes afterwards, so if more errors occur in the program, they can be reported
in the same run. The number of the line in which the error is detected is listed
and for some errors the name of the variable involved is also given (listed below
as <varname>). Naturally, the generation of errors cannot be disabled. Errors
always result in the eventual removal of the program from memory.

e Array variable used as Parameter — <varname> An identifier of
an array variable is used as scalar variable in a parameter definition. Note
that the context free grammar of the FORTRAN dialect prohibits the use
of subscripted parameter variables in parameter statements.

e Assignment to Loop Variable — <varname> A variable that is
currently used as loop-control variable is being assigned.

e Assignment to Parameter — <varname> A variable that has been
used in a parameter definition is being assigned.

e CONTINUE unexpected A CONTINUE statement is used outside a
loop body (note that CONTINUE statements have a different function in
this dialect).

e Condition is not of type LOGICAL An expression that is not of type
LOGICAL is used as a conditional expression.

130

Division by zero The right operand of a division operator can be eval-
uated at compile-time and is zero.

ELSE(IF) after ELSE An ELSE or ELSE IF statement is used after
an ELSE statement.

ELSE(IF) unexpected The keywords ELSE or ELSE IF are used outside
the body of a general IF statement.

Incorrect CONTINUE label The label associated with a CONTINUE
is not the same as the label in the DO-loop header.

Label has already been set The label in the label field has been used
before.

Lowerbound is greater than upperbound The lower bound expres-
sion of a subscript range in an array declaration is greater than the upper
bound.

More than seven dimensions — <varname> The dimension of the
declared array variable exceeds 7.

Parameter as loop variable — <varname> A variable defined in a
parameter statement is used as loop-control variable.

REAL operand in logical operator An expression of type REAL is
used as operand of a logical operator.

Same loop variable in DO-loop — <varname> A variable currently
used as loop-control variable is used again as loop-control variable.

Variable redeclared — <varname> A variable is redeclared with a
different type or dimension.

Wrong Dimension — <varname> A variable is used with a different
dimension than given in its declaration.

C Warning Messages (F77)

This appendix shows all possible warning messages with their cause. The gen-
eration of warnings can be disabled using the command nowarnings, and en-
abled with the command warnings. The number of the line in which the error

is detected is also given, sometimes accompanied with the name of a variable
involved (listed below as <varname>). Naturally, warnings do not prevent the
program from correctly being stored in memory.

e Different types in DO-loop The types of the loop-control variable and
expressions in a DO-loop are not identical.

e DO-loop will not be executed The bounds and stride of a DO-loop
can be determined at compile-time, and have such values, that the loop
will never be executed at run-time.

131

Duplicate declaration — <varname> A variable is declared again
but because the declaration is compatible (i.e. type and dimension are
the same) no error is generated. In case of an array declaration, the
subscript ranges may change, however.

IF (.TRUE.) ignored The conditional expression can be evaluated at
compile-time and has the value .TRUE..

INTEGER operand in logical operator An expression of type IN-
TEGER is used as operand of a logical operator.

LOGICAL operand in arithmetic operator An expression of type
LOGICAL is used as operand of an arithmetic operator.

LOGICAL operand in relational operator An expression of type
LOGICAL is used as operand of a relational operator.

Lowerbound cannot be computed The value of a lowerbound expres-
sion of a subscript range used in an array declaration cannot be deter-
mined at compile-time.

Other type in assignment to — <varname> The right hand side
expression of an assignment statement does not have the same type as
the left hand side variable.

Other type in value of Parameter — <varname> The expression
in a parameter statement does not have the same type as the parameter
variable.

Parameter not declared — <varname> The parameter variable in a
parameter statement has not been declared. Implicit data typing is used
to determine its type.

Parameter redefined — <varname> A parameter variable is defined
again in a parameter statement. The value in this parameter statement
will be associated with the parameter statement afterwards.

Parameter value cannot be computed The value of an expression in
a parameter statement cannot be determined at compile-time.

Statement after STOP cannot be reached A statement appears after
a STOP statement. If this is done inside a DO-loop or general-IF body,
the line number in the warning message is the last line of the body.

Subscripts are not of type INTEGER A subscript expression used
in an array reference is not of type INTEGER.

Subscripts are not of type INTEGER in declaration A subscript
expression used in an array declaration is not of type INTEGER.

Subscript out of bound The value of a subscript expression used in an
array reference is not within the allowed range.

132

e Upper bound cannot be computed The value of an upper bound
expression of a subscript range used in an array declaration cannot be
determined at compile-time.

e Variable not declared — <varname> A variable has not been de-
clared. Implicit data typing is used to determine its type.

D Error Messages (Transformation Language)

This appendix lists all error messages that can occur during the semantic check-
ing of the transformation language, and during the transformation application
phase. The number of the line in which the error is detected is listed. The
name of a variable involved in an error is also given.

D.1 Semantic Errors

The following errors can be generated during the semantic checking of a trans-
formation file.

e First structure in condition does not match pattern The first struc-
ture in the condition points to a kind of statement that is not (necessarily)
present during the transformation application phase.

e Incorrect number of directions The data dependence vector that is
given in a condition has an incorrect number of directions. The number
must be equal to the common nest of the statement list indicated by the
given structures.

e Intrinsic function/array variable cannot be used at left hand
side The introduction construction is used in the left-hand-side pattern
of a transformation.

e Merge cannot be used at left hand side The merge operator is used
in the left-hand-side pattern of a transformation.

e Scalar variable cannot be used at left hand side The introduction
construction of a scalar variable is used in the left-hand-side pattern of a
transformation.

e Second structure in condition does not match pattern The sec-
ond structure in the condition points to a kind of statement that is not
(necessarily) present during the transformation application.

e Variable enum is not defined before use Expression-pointer variable
lenum is used in the right-hand-side pattern of a transformation, but is
does not occur in the corresponding left-hand-side pattern.

e Variable snum is not defined before use Statement-pointer variable
I'snum is used in the right-hand-side pattern of a transformation, but is
does not occur in the corresponding left-hand-side pattern.

133

Variable snum is used more than once Statement-pointer variable
I'snum occurs more than once in a left-hand-side pattern. Since the
enforcing of equivalence of statement lists cannot be done with these vari-
ables, an error is generated.

Vectorize cannot be used at left hand side The vectorize operator
is used in a left-hand-side pattern of a transformation.

Vectorize cannot be used inside another vectorize The vectorize
operator is used inside another vectorize (this constraint results from an
implementation issue and can be avoided by multiple application of this
operator).

D.2 Application Errors

The following errors will generate an exception.

E

Introducing non scalar as loop-control variable A DO-loop must
be created with a non-scalar as loop-control variable.

Stride cannot be determined The stride in the vector triplet cannot
be determined, because a subscript expression is too complicated.

Unconsistent use of variable A variable is introduced that is already
present in the symbol-table with inconsistent type of dimension.

Vector variable is a non scalar The expression-pointer variable used
as second argument of the vectorize operator is not bound to a scalar
variable.

Vector variable occurs in other vector The vector variable occurs in
another vector triplet, prohibiting correct vectorization of that expression.

Vector variable occurs more than once A vector variable occurs in
more than one subscript expression of one variable prohibiting correct
vectorization.

File Organization

The C program of the prototype compiler is defined in separate files in order
to be able to apply the technique of separate compilation. Therefore, it is
necessary to define the dependences between the different modules to avoid
redundant compilation and to keep the resulting executable up to date without
placing that burden on the user. The dependences and commands required to
compile the programs are defined in a so-called make file. This appendix shows
the makefile used, together with a graphical representation of this makefile.
Note that some of the dependences and commands are already known to the
system (e.g. file.c — file.o by cc -O -c), so they do not appear in the
makefile. The command make will initiate the compilation process.

134

The substitution of all yy and YY in f_yy and F_YY, respectively, in the
generation of the FORTRAN scanner and parser with the LEX and YACC tool
is necessary to prevent duplicate names in the resulting sources, since these
tools are also used to generate the scanner and parser for the transformation
language.

YFLAGS = -d
CFILES = parser.o scanner.o f77parser.o fsup.o symbol.o \
mem.o show.o struct.o dep.o deptb.o env.o \

trafo.o trafoapp.o
LINTS = f77parser.ln fsup.ln symbol.ln mem.ln \
show.ln struct.ln dep.ln deptb.ln env.ln trafo.ln trafoapp.ln

fof: $ (CFILES)
cc $(CFILES) -o f2f -1m

scanner.o: y.tab.h

f77parser.o: f77parser.c inter.c prgtype.h
cc -0 -c f77parser.c

f77parser.c: fparser.y
yacc fparser.y
sed ’s/yy/f_yy/g’ <y.tab.clsed ’s/YY/FYY/g’ \
|sed ’s/stacks/yystacks/g’ >f77parser.c
rm y.tab.c

inter.c: fscanner.1
lex fscanner.l
sed ’s/yy/f_yy/g’ <lex.yy.clsed ’s/YY/FYY/g’ >inter.c
rm lex.yy.c

fsup.c: prgtype.h

mem.o: trafo.h prgtype.h
show.o: prgtype.h
struct.o: prgtype.h
symbol.o: prgtype.h

dep.o: prgtype.h
deptb.o: prgtype.h
parser.o: trafo.h

trafoapp.o: trafo.h prgtype.h
trafo.o: trafo.h prgtype.h

The following command sequence is executed whenever all the files are updated.

yacc -d parser.y
mv y.tab.c parser.c
cc -0 -c parser.c

135

lex scanner.l
cc -0 -c lex.yy.c
rm lex.yy.c
mv lex.yy.o scanner.o
yacc fparser.y
sed ’s/yy/f_yy/g’ <y.tab.clsed ’s/YY/FYY/g’ \
|sed ’s/stacks/yystacks/g’ >f77parser.c
rm y.tab.c
lex fscanner.1l
sed ’s/yy/f_yy/g’ <lex.yy.clsed ’s/YY/FYY/g’ >inter.c
rm lex.yy.c
cc -0 -c f77parser.c
cc -0 -c fsup.c
cc -0 -c symbol.c
cc -0 -c mem.c
cc -0 -c show.c
cc -0 -c struct.c
cc -0 -c dep.c
cc -0 -c deptb.c
cc -0 -c env.c
cc -0 -c trafo.c
cc -0 -c trafoapp.c
cc parser.o scanner.o f77parser.o fsup.o symbol.o mem.o show.o
struct.o dep.o deptb.o env.o trafo.o trafoapp.o -o f2f -1m

The following picture illustrates the dependences defined in the make file.

prgtype.h

deptb.c

struct.c
fsup.c
show.c
dep.c

symbol.c

parser.y trafoapp.c

trafo.c

scanner.l

yacc -d parser.y .
‘¥ mv y.tab.c parser.c lex scanner.l
cc -0 -c lex.yy.c

cc-0-c
rm lex.yy.c

y.tab.h mv lex.yy.o scanner.o
parser.o A / cc-0-c
as a result

mem.o

cc-0-c &

trafoapp.o
trafo.o
mem.o

fscanner.1l £pa
% lex fscanner] ¥

rm lex.yy.c yacc fparser.y
rm y.tab.c

rser.y

env.c

% cc-0-c

inter.c
¢ #include £77parser.c

f77parser.o

mem.c

cc-O-c

Figure 25: File Organzation

136

F Program Type Information

[Source to Source Compiler
by Aart J.C. Bik
Information File — x/

#define NESTSIZE 25
/¥ Program Data Structure Information %/

#define K_DO 'a'
#define K_ASSIGN 'b!
#define K_LOGICIF 'c'
#define K_.GENIF 'd'
#define K_ELSE 'e!
#define K_ELSEIF 'f'
#define K WHILE 'g'
#define K_.STOP 'h'
#define K_LINKUP 'i'
#define K_LINKIFUP 'j'

#define E_VAR 'a'
#define E.CONST 'b'
#define E_ZMUL 'c!
#define E_DIV 'd!
#define E_EXP 'e!

#define E_EQ 'f!
#define E.NE 'g!
#define E_.GE 'h'
#define E_GT i
#define E_LE 'yt
#define E_LT 'k!

#define E_EQV '

#define E_NEQV 'm'
#define E_AND 'n'

#define E_OR 'o!
#define ENOT 'p
#define E_UMIN 'q'
#define E_ADD 'r
#define E_MIN 's!
#define E_VEC 't

#define NORM 'n'
#define ALL 'a'

union valuerec
{ int i

137

double f;
int b;

I

struct stmt_node
{ char kind;
struct stmt_node *next;
union{ struct{ struct expr_node xindex,*exprl,*expr2,*xexpr3;
struct stmt_node xbody;
int loopno;
char ext;
} do_loop;
struct{ struct expr_node *lhs rhs;
int stmtno;
} assign;
struct{ struct expr_node *condition;
struct stmt_node xbody;
int condno;
b osdf;
Fus
I

struct expr_node
{ char kind;
union{ struct{ struct expr_node xargl, xarg2;
} operands;
struct{ int entry;
struct sub_node xdim _list;
} var;
struct{ int type;
union valuerec val;
} expr;
struct{ struct expr_node xel,*e2,xe3;
} vec;
P
I

struct sub_node
{ struct expr_node xhead;
int *normexpr;
struct sub_node xtail; } ;

struct dim_node
{ int high,low;
struct dim_node *next;

b

138

typedef struct stmt_node xstmt_ptr;
typedef struct expr_node xexpr_ptr;
typedef struct sub_node xsub_ptr;

typedef struct dim_node *dim_ptr;

expr_ptr e_pop();
stmt_ptr s_pop(),give_program();
union valuerec cast_expr();

/¥ Symbol Table Information x/
[+ Type Identifications */

#define UNDEF 0
#define INTTYPE 1
#define REALTYPE 2
#define LOGICTYPE 3

/* Symboltable Functions x/

char xst_pos();
union valuerec st_returnval();
dim_ptr st_returndimlist();

/¥ Dependence Table Information x/

#define Cj 'c!
#define Lj 'l
#define Sj 's!
#define IN it
#define OUT 'o'
#define FLOW 'f!'
#define ANTI 'a'
#define OUTPUT 'p'
#define INPUT 'n'

Jx Memory Management Information x/

char *alloc_mem(),*new_mem();

G LEX Definitions for the FORTRAN 77 Dialect
7o{

[+ Source to Source Compiler

139

by Aart J.C. Bik

LEX-definitions for FORTRAN x/
[+ #define YYLMAX 2000 «/
7o}

/x Regular Expressions */

letter [A—Za—7]

digit [0—9]

special LA S I UL X

blank [\t]

comment ("C"["c"|"x").x\n

emptyline {blank}*\n

continuation " "({letter}|{digit}|{special})

labell ({digit}{1,5})

label2 "o ({digit}{1,4})

label3 nor({digit}{1,3})

label4 v ov({digit}{1,2})

labelb v w{digit}

label ({label5}|{labeld } |{label3} |{label2} |{labell})

identifier {letter}(({digit}|{letter})x)

int_num {digit}+
decpoint {digit}+\.{digit }*
real num {decpoint}(("E"|"e")("+"|"-")?{digit}+)?

%%
\n/({comment }|{emptyline})?{continuation} { fline++; }

“{label} { sscanf(yytext,"%d" ,&yylval); return(LABEL); }
“{comment} { fline++; }

“{emptyline} { fline++; }

“{continuation} {; }

{blank }+ {:}
\n { return('\n'); /4 parser must increase f_line x/ }

“{label}{blank}*"CONTINUE" { sscanf(yytext,"%d",&yylval); return(LCONTINUE);

}
“{label}{blank}*"continue" { sscanf(yytext,"%d",&yylval); return(LCONTINUE);

}

140

npg"
"do"
"ELSE"
"else"
"END"
"end"
"ENDDO"
"enddo"
"END DO"
"end do"
"ENDIF"
"endif"
"END IF"
"end if"
nIE"

nifn
"INTEGER"
"integer"
"LOGICAL"
"logical"
"PARAMETER"
"parameter"
"PROGRAM"
"program"
"REAL"
"real"
"STOP"
"stop"
"THEN"
"then"
"WHILE"
"while"

ll*ll

n/n
ngn

Mo
n (n
n) n

II'EQ'II
ll'eq'll

{ return(DO); }
{ return(DO); }

{ return(ELSE); }

{ return(ELSE); }
{ return(END); }

{ return(END); }

{ return(ENDDO); }
{ return(ENDDO); }
{ return(ENDDO); }

{ return(ENDDO); }

{ return(ENDIF); }

{ return(ENDIF); }

{ return(ENDIF); }

{ return(ENDIF); }

{ return(IF); }

{ return(IF); }
{ return(INTEGER); }
{ return(INTEGER); }
{ return(LOGICAL); }
{ return(LOGICAL); }
{ return(PARAMETER);
{ return(PARAMETER);
{ return(PROGRAM); }
{ return(PROGRAM); }

{ return(REAL); }

{ return(REAL); }

{ return(STOP); }

{ return(STOP); }

{ return(THEN); }

{ return(THEN); }

{ return(WHILE); }

{ return(WHILE); }

—

{ return('*"); }
{ return('/"); }
{ return('+"); }
{ return('-"); }
{ return(EXP); }
{ return(' ("); }
{ return(')"); }
{ return('="); }
{ return(':"); }
{ return(',"); }
{ return(EQ); }
{ return(EQ); }

141

".NE." { return(NE); }
".ne." { return(NE); }
".GE." { return(GE); }
".ge." { return(GE); }
".GT." { return(GT); }
"gt." { return(GT); }
".LE." { return(LE); }
".le." { return(LE); }
".LT." { return(LT); }
"1t { return(LT); }
".EQV." { return(EQV); }
".eqv." { return(EQV); }
" .NEQV." { return(NEQV); }
".neqv." { return(NEQV); }
".NOT." { return(NOT); }
".not." { return(NOT); }
".AND." { return(AND); }
".and." { return(AND); }
".0R." { return(OR); }
".or." { return(OR); }
" TRUE." { currentval.b = 1; yylval = LOGICTYPE; return(NUM_BOOL);
}
".true." { currentval.b = 1; yylval = LOGICTYPE; return(NUM_BOOL);
}
".FALSE." { currentval.b = 0; yylval = LOGICTYPE; return(NUM_BOOL);
}
".false." { currentval.b = 0; yylval = LOGICTYPE; return(NUM_BOOL);
}
{identifier} { yylval = st_insertid(yyleng,yytext); return(ID); }
{real num} { sscanf(yytext,"%1f" ¤tval.f);
yylval = REALTYPE; return(NUM_REAL); }
{int num} { sscanf(yytext,"%d" ,¤tval.i);

yylval = INTTYPE; return(NUM_INT); }
{ return(yytext[0]); /x Parser generates the error */ }

%%

/x Function needed by LEX x/

yywrap() { return 1; }

H YACC Definitions for the FORTRAN 77 Dialect
7o{

142

[Source to Source Compiler
by Aart J.C. Bik
YACC-definitions for FORTRAN x/

#include <stdio.h>

#include "prgtype.h"

#define __RUNTIME_YYMAXDEPTH /* Runtime memory allocation in YACC
+/

/x External variables %/
extern int error,f_line;
/x Administration Variables %/

int curtp,tp,assignno,loopnr,condno;
union valuerec currentval;

[+ Attributes: expr and simple_expr hold the type of the expression
expr_list holds the merged type
var holds the symboltable entry
internlab holds the label value
NUM_INT NUM_REAL and NUM_BOOL hold the type of the constant
LCONTINUE and LABEL hold the label value x/
o}

%token LABEL EQ NE GE GT LE LT EQV NEQV OR AND NOT UMIN
%token LCONTINUE DO ELSE END ENDDO ENDIF EXP

%token GOTO ID IF INTEGER LOGICAL

%token PARAMETER PROGRAM REAL STOP THEN WHILE

%token NUM_INT NUM_REAL NUM_BOOL

%mnonassoc EQV NEQV

Yoleft OR

Yoleft AND

Y%mnonassoc NOT

Y%mnonassoc EQ NE GE GT LE LT
Yoleft AR

%left YA

%right EXP

Y%right UMIN

Y%start program

%%

143

program : PROGRAM ID newline
{ printf("\nPROGRAM %s\n",st_pos($2));
assignno = loopnr = condno = 0;
program _list
END newline { create_program(); }

I

program_list : spec newline programlist {; }
| stmt_list {;}

I

spec : PARAMETER ' (' par.list ') {:}
| INTEGER { curtp = INTTYPE; } defvarlist {; }
| REAL { curtp = REALTYPE; } defvar.list {; }
| LOGICAL { curtp = LOGICTYPE; } defvar_list {; }

I

par_list cpar ', ' parlist {;}
| par {:}

par :ID '=" expr { test_par($1,$3); }

defvar_list : defvar ', "' defvarlist {; }

| defvar {;}
defvar :ID { reset_dim(); give_type($1,curtp,(int) 0); }
| ID ' (" { intpush((int) 0); reset_dim(); }

subscriptlist ') ' { give_type($1,curtp,intpop()); }

I

subscriptlist : subscript ', ' subscriptlist { intpush((intpop()+1)); }
| subscript { intpush((intpop()+1)); }
subscript : expr { test_subscript($1,INTTYPE);
make_sub(1); }

| expr ':" expr { test_subscript($1,$3);
make_sub(2); }

I

stmt list : LABEL { is_unique($1); }
stmt newline stmt list { s_link(); }

144

| stmt newline stmt list { s_link(); }
| { s.push(NULL); }

I

stmt : DO internlab scalarvar '=' expr ',' expr
{ test_loop($3,%$5,$7,INTTYPE);
stack($2,$3); intpush(++loopnr); }
newline stmt_list
LCONTINUE { is_unique($11); unstack($11);
make_loop(1,intpop(),NORM); }
| DO internlab scalarvar '=' expr ',' expr ',' expr
{ test_loop($3,$5,$7,%9); stack($2,$3); intpush(+-+loopnr); }
newline stmt_list
LCONTINUE { is_unique($13); unstack($13);
make_loop((int) 0,intpop(),NORM); }
| IF ' (" expr ') ' singlestmt
{ test_if($3); make_logicalif(4++condno); }
| IF ' (" expr ') ' THEN
{ test_if($3); add_genif();
intpush(++condno); intpush(1); }
newline stmt_list
ENDIF { intpop(); make_generalif(intpop()); }
| ELSE IF ' (' expr ')' THEN
{ test_else(1); test_if($4); make_else(1,++condno); }
| ELSE { test_else((int) 0); make_else((int) 0,(int) 0); }
| DO WHILE ' (" expr ')
{ add_do(); test_if($4); intpush(++condno); }
newline stmt_list
ENDDO { make_while(intpop()); }
| singlestmt

I

singlestmt : STOP { make_stop(); }
| var '=' expr { test_assign($1,$3); make_assign(++assignno); }

I

internlab ~ : NUM_INT { $$ = currentval.i; }

var : scalarvar { $$ = $1; }
| arrayvar {$$ =791}
scalarvar : ID { $% = $1; /¢ entry /
test_type($1,(int) 0,IN TTYPE)7
make_var($1,(int)) }

145

arrayvar :ID ' { intpush((int) 0); }
expr_list ') ' { $3 = $1; /* entry %/ curtp = intpop();
test_type($1,curtp,$4); make_var($1,curtp); }

I

expr_list :expr ',' expr_list
{ intpush((intpop()+1)); $$ = mergetype($1,$3); }
| expr
{ intpush((intpop()+1)); $$ = $1;

I

expr rexpr '+' expr
{ tp = arith($1,$3); make_expr(E_ADD,tp); $$ = tp; }
| expr '-' expr

{ tp = arith($1,$3); make_expr(E_MIN,tp); $$ = tp; }
| expr '*' expr
{ tp = arith($1,$3); make_expr(E_MUL,tp); $$ = tp; }
| expr '/' expr
{ tp = arith($1,$3); make_expr(E_DIV, tp); $$ = tp; }
| expr EXP expr
{ tp = arith($1,$3); make_expr(E_EXP,tp); $$ = tp; }
| expr EQ expr
{ tp = relat($1,$3); make_expr(E_EQ,tp); $$ = tp; }
| expr NE expr
{ tp = relat($1,$3); make_expr(E_NE,tp); $$ = tp; }
| expr GE expr
{ tp = relat($1,$3); make_expr(E_GE,tp); $$ = tp; }
| expr GT expr
{ tp = relat($1,$3); make_expr(E_GT,tp); $$ = tp; }
| expr LE expr
{ tp = relat($1,$3); make_expr(E_LE,tp); $$ = tp; }
| expr LT expr
{ tp = relat($1,$3); make_expr(E_LT,tp); $$ = tp; }
| expr EQV expr
{ tp = logic($1,$3); make_expr(E_EQV,tp); $$ = tp; }
| expr NEQV expr
{ tp = logic($1,$3); make_expr(E_NEQV,tp); $$ = tp; }
| expr AND expr
{ tp = logic($1,$3); make_expr(E_AND,tp); $$ = tp; }
| expr OR expr
{ tp = logic($1,$3); make_expr(E_OR,tp); $$ = tp; }

| NOT expr
{ tp = ulogic($2); make expr(ENOT,tp); $$ = tp; }
| "' expr ') {9$% =92}

| '=" expr %prec UMIN { make_expr(E_UMIN,$2); $$ = $2;

146

| var { $$ = st_returntype($1);
[var has made expression node %/ }
| constant { $$ = $1; make_const($1,currentval); }

I

constant : NUM_REAL { $$ = REALTYPE; / currentval.f is set %/ }
| NUM.INT { $$ = INTTYPE; /« currentval.i is set %/ }
| NUM_BOOL { $$ = LOGICTYPE; / currentval.b is set / }

I

newline :'\n' { fline++; }
;
%%
#include "inter.c"
/* Reports an error message in case of a syntax error in the source code x/
yyerror(s) char xs;
{ printf("\n#*** %s in FORTRAN file: line <%d>\n",s,fline);

error = 1; /[« sets the error flag %/
while (yylook() > 0); /* lex - hack %/

}

I Supporting YACC (F77) Routines

[+ Source to Source Compiler
by Aart J.C. Bik
Supporting YACC routines for FORTRAN x/

#include <stdio.h>
#include "prgtype.h"

/x External Variables x/

extern dim_ptr lastdim,firstdim;
extern FILE «f_yyin;

Jx Administration Variables %/
int warnings,error,f line,ifnest,whilenest;
Jx Warning and Error Procedures */

sayerror(str) char *str;

147

{ printf("- Error: %s (line %d)\n",str,fline);
error = 1; /x set the error flag / }

warning(str) char *str;
{ if (warnings) printf("- Warning: %s (line %d)\n" str,fline); }

chain_var(str,i,err) char xstr; int ierr;
{ char mess[55];

strepy (mess,str);

strcat(mess,st_pos(i));
if (err) sayerror(mess);
else warning(mess);

}

/* Assigns a type and a dimension to a variable in the symboltable
and attaches a subscriptlist
If a type is already assigned, a warning is generated if the types
and dimensions are compatible, an error is generated otherwise

If the dimension exceeds 7 an error is generated */

give_type(i,tp,dim) int i,tp,dim;
{ if (st_returntype(i) == UNDEF)

st_givetype(i,tp);
else { if ((streturntype(i) == tp) && (streturndim(i) == dim))

chain_var("Duplicate declaration -> ",i,0);

else chain_var("Variable redeclared -> ",i,1);
del_sublist (st _returndimlist(i));

}

if (dim > 7)
chain_var("More than seven dimensions -> ",i,1);

st_givedim(i,dim); st_givedimlist(i,firstdim);
}

/¥ Determines the type of a variable according to the FORTRAN 77 rules

(IMPLICIT DATA TYPING) I-N INTEGERs
remaining REALs s/

int dettype(i) int i;
{3 (((st-pos(i)[0]) >
((st_pos(i)[0]) =
return INTTYPE;
else return REALTYPE;

}

int determine(i) int i;

148

{ switch(dettype(i))
{ case INTTYPE:
if (warnings) printf("\t\t\t\t type INTEGER assumed\n");
return INTTYPE;
case REALTYPE:
if (warnings) printf("\t\t\t\t type REAL assumed\n");
return REALTYPE;
default:
printf("**x Corrupt\n"); exit(1);
}
}

Jx Test if the use of a variable is correct
If its type is not declared,
a type is determined first using determine(i) %/

test_type(i,dim,sbtp) int i,dim,sbtp;
{ int localdim;

if (st_returntype(i) == UNDEF)
{ chain_var("Variable not declared -> ".i,0);
st_givetype(i,determine(i));

¥
/+ Note that dimension is also used to indicate a PARAMETER %/

localdim = st_returndim(i); if (localdim < 0) localdim = 0;
if (dim # localdim) chain_var("Wrong Dimension -> " i,1);
if (sbtp # INTTYPE) warning("Subscripts are not of type INTEGER");

}

[+ Checks if subscript expressions are of type INTEGER x/
test_subscript(t1,t2) int t1,t2;

{if ((t1 # INTTYPE) || (t2 # INTTYPE))
warning("Subscripts are not of type INTEGER in declaration");

}

[* Merges two types into INTTYPE or UNDEF %/
int mergetype(t1,t2) int t1,t2;
{if ((t1 == INTTYPE) && (t2 == INTTYPE)) return INTTYPE;
else return UNDEF; }
/* Checks a parameter variable and sets its value in the symboltable x/
test_par(i,partype) int i,partype;
{ int bool;

149

expr_ptr ex;

if (streturndim(i) < 0)
chain_var("Parameter redefined -> ",i,0);
if (streturntype(i) == UNDEF)
{ chain_var("Parameter not declared -> ",i,0);
st_givetype(i,determine(i)); }
if (streturndim(i) > 0)
chain_var("Array variable used as Parameter -> ";i1);
if (st_returntype(i) # partype)
chain_var("Other type in value of Parameter -> " i,0);
/x+ Mark as parameter and cast the value to type of variable %/
st_givedim(i,—1);ex = e_pop();
st_giveval(i,cast_expr(ex,st_returntype(i),&bool)); del_expr(ex);
if (! (bool)) warning("Parameter value cannot be computed");

}

[+ Checks if the types of expression in an assignment on the left hand side
and the right hand side are the same and if the left-hand-side variable
is not a parameter or a loop-variable x/

test_assign(i,rhstype) int i,rhstype;
{ if (streturndim(i) < 0)
chain_var("Assignment to Parameter -> "i,1);
if (st_returntype(i) # rhstype)
chain_var("Other type in assignment to -> " i,0);
if (isloopindex(i))
chain_var("Assignment to Loop Variable -> "/i,1);

}

[+ This procedure checks if the types of the expressions in a DO-loop
are the same as the type of the loop variable
A warning is reported if different types are used
An error is generated if the variable is an parameter %/

test_loop(i,t1,t2,t3) int 1,t1,t2,t3;
{ if (is_loopindex(i))

chain_var("Same loop variable in DO-loop -> ",i,1);

if ((streturntype(i) # t1) || (streturntype(i) # t2)

|| (streturntype(i) # t3))
warning("Different types in DO-loop");

if (streturndim(i) < 0)
chain_var("Parameter as loop variable -> ",i,1);

}

/* Checks if the type in an IF-statement is LOGICAL %/

150

test_if(tp) int tp;
{ if (tp # LOGICTYPE)
sayerror("Condition is not of type LOGICAL");

}

add_genif() { ifnest++; }
add_do() { whilenest++; }
/¥ Checks if a ELSE of ELSE IF is expected %/

test_else(arg) int arg;
{ int per;

if (ifnest < 0) sayerror("ELSE(IF) unexpected");
else { per = intpop(); /« Something is on the stack x/
if (per == 0) sayerror("ELSE(IF) after ELSE");
else if (arg == 0) per = 0;
intpush(per); }

}

[+ The functions Arith,Relat, Logic and ULogic test the types of the operands
and reports an error or a warning if necessary
It also computes the resulting type of the expression /

int arith(il,i2) int i1,i2;
{ if (il == LOGICTYPE) || (i2 == LOGICTYPE))
warning("LOGICAL operand in arithmetic operator");
if (il == REALTYPE) || (i2 == REALTYPE)) return REALTYPE;
else return INTTYPE;

}

int relat(il,i2) int i1,i2;
{ if ((i1 == LOGICTYPE) || (i2 == LOGICTYPE))
warning("LOGICAL operand in relational operator");

return LOGICTYPE;
}

int logic(il,i2) int i1,i2;
{ if (il == REALTYPE) || (i2 == REALTYPE))
{ sayerror("REAL operand in logical operator"); return LOGICTYPE;

[+ Real operands are not allowed, so an error is reported x/
else if ((i1l == INTTYPE) || (i2 == INTTYPE))

151

{ warning("INTEGER operand in logical operator"); return INTTYPE;

else return LOGICTYPE;
}

int ulogic(il) int il;
{if (il == REALTYPE)
{ sayerror("REAL operand in logical operator"); return LOGICTYPE;

else if (il == INTTYPE)
{ warning("INTEGER operand in logical operator"); return INTTYPE;

else return LOGICTYPE;
}

[+ Initializes the parser x/

f_parserinit/()
{ fgarbage_collect(); fstacks_init();
st_init(); struct_init();
fline = 1; whilenest = ifnest = 0; }

[+ Calls the parser if the filename exists
The following tasks are performed:
+ lexical scanning
+ parsing
+ semantic checking
+ internal data structure creation with constant folding
+ data dependence analysis %/

f_parser(fname,wrn,shwdep) char *fname; int wrn,shwdep;
{ f_parserinit();
error = (0; warnings = wrn;
fyyin = fopen(fname,"r");
if (foyyin == NULL)
printf("\n*** Bad filename: %s\n",fname);
else { f_yyparse(); fclose(f_yyin);
if (error)
f_parserinit();
else { datadep_analysis(give_program());
fortran_symboltable(); dep_dump(shwdep);
dump_program((int) 1,"program.txt"); }
}

return error;

}

152

J Symbol Table Routines

[Source to Source Compiler
by Aart J.C. Bik
Symbol Table Operations x/

#include <stdio.h>
#include "prgtype.h"

#define F MAXSYM 30

[+ Initial Max. number of symbols in symbol table */
#define F_MAXSTORE 210

/x Initial Max. number of characters stored %/

/¥ The symboltable data structure x/

int *f_symbol,*f_dim,*f_type; & [F-MAXSYM] «/
dim_ptr *f_dimlist; fx [FZMAXSYM] «/
union valuerec *f_val; fx [FZMAXSYM] %/
char *f_symstore; Jx [F_MAXSTORE] +/

int f_storept,fsympt;
/* Returns begin address of string at position i in symbol table x/

char *st_pos(i) int i;
{ return &(f_symstore[(f.symboll[i])]); }

/* Returns number of symbols in the symbol table x/
int st_number() { return fsympt; }
/* Returns type of symbol at position i x/

int st_returntype(i) int i;
{ return f_typeli]; }

/x Returns value of symbol at position i %/

union valuerec st_returnval(i) int i;
{ return f_valli]; }

/* Returns dimension of symbol at position i %/

int st_returndim(i) int i;
{ return f_diml[i]; }

/* Returns dimensionlist of symbol at position i x/

153

dim_ptr st_returndimlist(i) int i;
{ return f_dimlist[i]; }

[+ Assigns a type to a symbol at position i /

st_givetype(i,tp) int i,tp;
{ f-typeli] = tp; }

[+ Assigns a value to a symbol at position i %/

st_giveval(i,val) int i; union valuerec val;

{ f_val[i] = val; }
[+ Assigns a dimension to a symbol at position i */

st_givedim(i,dim) int i,dim;

{ f.dim[i] = dim; }
[+ Assigns a dimensionlist to a symbol at position i %/

st_givedimlist(i,dl) int i; dim_ptr dl;
{ fdimlist[i] = dl; }

/x Inserts a lexeme in the symboltable if it is new and
returns the position in the symboltable s/

int st_insertid(length,str) int length; char *str;

{ static int SYM_CUR = F_MAXSYM;
static int STORE_CUR = F_MAXSTORE;
register int i;
int place = 0;
char snew_mem();

if (length > 6) { length = 6; str[6] = '\0'; }
while (place < fsympt)
if (stremp(st_pos(place),str) == 0) break; else place++;
if (place == fsympt)
{ /x A new symbol has been found %/
if (fsympt > SYM_CUR)
{ SYM_CUR += 20;
f_symbol = (int *) new_mem(f_symbol,(SYM_CUR x sizeof(int)));
f dim = (int *) new_mem(f_-dim, SYM_CUR x sizeof(int));
f type = (int *) new_mem(f_type,(SYM_CUR x sizeof(int)));
f_dimlist = (dim_ptr x) new_mem (f_dimlist,
(SYM_CUR = sizeof(dim_ptr)));

154

fval = (union valuerec *) new_mem(f_val,
(SYM_CUR = sizeof(union valuerec)));
}
f_type[fsympt] = UNDEF; f_dim[fsympt] = 0;
f_dimlist[fsympt] = NULL; f_symbol[fsympt++] = f_storept;
for (i = 0;1i < length; i++)
{ if (fstorept > STORE_CUR)
{ STORE_CUR += 140;
f_symstore = (char *) new_mem/(f_symstore,
(sizeof(char) * STORE_CUR));
}
f_symstore[f_storept++] = strli];
}
}

return place;

}

[x Writes the symbols used into the file program.sym x/

fortran_symboltable()
{ FILE xsymfile;
dim_ptr diml;
register int j;
symfile = fopen("program.sym","w");
if (symfile == NULL)
printf("*** Error: can't open program.sym");
else
{ fprintf(symfile,"Id\tDim\t\tType\t\tValue\t\tBounds\n\n");
for (j=0; j<fsympt; j++)
{ fprintf(symfile,"%s\t",st_pos(j));
if (f_type[j] == UNDEF)
fprintf(symfile,"-\t\tUndefined\t-\n");
else
{ if (f_dim[j] > 0)
fprintf(symfile,"%d\t\t" f.dim[j]);
else if (f_dim[j] == 0) fprintf(symfile,"Scalar\t\t");
else fprintf(symfile,"Parameter\t");
switch (f_type[j])
{ case INTTYPE:
if (f.dim[j] < 0)
fprintf(symfile,"INTEGER\t \t%d" fval[j].i);
else fprintf(symfile,"INTEGER\t\t-");
break;
case REALTYPE:
if (f_dim[j] < 0)

155

fprintf(symfile,"REAL\t\t%£" fval[j].f);
else fprintf(symfile,"REAL\t\t-");
break;
case LOGICTYPE:
if (f_dim[j] < 0)

{ if (fval[j].b == 0)
fprintf(symfile,"LOGICAL\t\t .FALSE.");
else fprintf(symfile,"LOGICAL\t\t.TRUE.");

}
else fprintf(symfile,"LOGICAL\t\t-");
break;
default:
printf("**x Corrupt\n"); exit(1); }
if (f_dim[j] > 0)
{ fprintf(symfile,"\t\t (");
diml = f_dimlist[j];
while (diml # NULL)
{ fprintf(symfile,"%i:%1i ",diml—low,diml—high);
diml = diml — next; }
fprintf(symfile,")\n");
} else fprintf(symfile,"\n");

}
}
fclose(symfile);
}
}

/¥ Symbol table memory management %/

st_memory/()

{ fsymbol = (int %) allocmem(F_MAXSYM x sizeof(int));
f_dim = (int %) allocmem(F MAXSYM x sizeof(int));
ftype = (int %) allocmem(F MAXSYM x sizeof(int));

f dimlist = (dim_ptr =) alloccmem(F MAXSYM x sizeof(dim_ptr));
f_val = (union valuerec %) alloc.mem(F_-MAXSYM x* sizeof(union valuerec));

f_symstore = (char %) alloc.mem(F MAXSTORE x sizeof(char));
fsympt = 0; /* symbol table empty */

}

st_garbage_collect|()
{ register int i; for (i=0; i<fsympt; i++) del_sublist(f_dimlist[i]); }

st_init()
{ fstorept = fsympt = 0; }

156

K Memory Management Routines

[Source to Source Compiler
by Aart J.C. Bik

Procedures for memory management x/

#include <stdio.h>
#include "prgtype.h"
#include "trafo.h"

/x External variables %/

extern dim_ptr firstdim;
extern int trafpt;
extern trafo_ptr xtrafoin,xtrafoout,xtrafocond;

[+ Stack declarations x/

#define E_.STACKSIZE 30

[+ Initial Max. number of expressions stacked x/
#define S.STACKSIZE 100

/+ Initial Max. number of statements stacked */
#define T_STACKSIZE 100

/+ Initial Max. number of transformations stacked */
#define INTSTACK 20

[+ Initial Max. number of integers stacked — x/
#define NUMLABELS 80

/* Initial Max. numbers of labels stored x/

int tsp=0,ssp=0,esp=0,intp=0,stackpt=0,labelpt=0;

int sintstack; Jx [INTSTACK] «/
stmt_ptr *s_stack; Jx [S.STACKSIZE] %/
expr_ptr sxe_stack; [x [E.STACKSIZE] %/
trafo_ptr *t_stack; [[T-STACKSIZE] %/
int «]_store; /x [NUMLABELS %/

int stck[NESTSIZE], lpname[NESTSIZE];
/+ Memory management routines x/
[+ Allocates memory and tests if memory is really allocated x/

char *alloc_mem(size) int size;
{ char smalloc(),*p;

p = malloc(size);

if (p == NULL) out_of mem();
return p;

157

}

char snew_mem(p,size) char *p; int size;
{ char srealloc();

p = realloc(p,size);
if (p == NULL) out_of mem();
return p;

}

Jx Out of memory-handler x/

out_of_mem/()
{ printf("*** Out of memory\n");
exit(1);

}

[+ This procedure allocates dynamic memory for:
+ The statement stack
+ The expression stack
+ The trafo stack
+ The integer stack
+ The DO-loop stack <- static in prototype x/

parsers_memory()

{ sstack = (stmtptr %) alloc.mem(S_.STACKSIZE x sizeof(stmt_ptr));
estack = (expr_ptr %) alloc.mem(E_STACKSIZE # sizeof(expr_ptr));
tstack = (trafoptr %) alloc.mem(T_STACKSIZE x sizeof(trafo_ptr));
intstack = (int %) allocomem(INTSTACK x sizeof(int));
lstore = (int %) alloccmem(NUMLABELS x sizeof(int));

}

/* Garbage collecting is performed when an error has occured
during the parsing of a FORTRAN 77 program or when a new
program is read in
Dimension nodes, and statement nodes and expression nodes pointed
to on the stack are deleted, the symbol-table is cleared
and the program is deleted %/

fgarbage_collect()
{ register int i;

/x Use loops instead of unstack/emtpy routines */
for (i=0; i<ssp; i++) del_stmtlist(sstack][i]);
for (i=0; i<esp; i++) del_expr(estack[i]);
st_garbage _collect();

158

del_sublist(firstdim); del_stmtlist(give_program());

}

/* Garbage collecting is performed when an error has occured
during the parsing of the transformation file or when
a new file is read in
The trafo nodes on te stack are deleted */

trafo_garbage_collect()
{ register int i;

/+ Use a loop instead of unstack/empty routines x/
for (i = 0; i<tsp; i++) del_trafolist(tstack][i]);

for (i = 0; i<trafpt; i++)

{ del_trafolist(trafoin[i]); del_trafolist(trafooutli]);
del_trafolist(trafocond]i]); }

}

[+ Clears a do-trafo-node x/

del_trafdo(td) trafo_ptr td;

{ del_trafolist(td — u.do_pattern.ex1);
del_trafolist(td — u.do_pattern.ex2);
del_trafolist(td — u.do_pattern.ex3);
del_trafolist(td — u.do_pattern.body);

}

[+ Clears a list of transformation nodes %/

del_trafolist(tl) trafo_ptr tl;
{ if (t] # NULL)
{ switch (tl — kind)
{ case T DO : del_trafdo(tl); break;
case T_DOA : del_trafdo(tl); break;
case T_ASSIGN : del_trafolist(tl — u.assign_pattern.lhs);
del_trafolist(t] — u.assign_pattern.rhs); break;
case TIF : del_trafolist(tl — u.if_pattern.cond);
del_trafolist(tl — u.if_pattern.body); break;
case T EXP : del_trafolist(tl — u.exp.opl);
del_trafolist(tl — u.exp.op2); break;
case T_-VECTOR : del_trafolist(tl — u.vec.v1l);
del_trafolist(tl — u.vec.v2);
del_trafolist(tl — u.vec.v3); break;
case T_'MERGE : del_trafolist(t] — u.merge.l1);
del_trafolist(tl — u.merge.12); break;
case T_FUNC : del_trafolist(tl — u.func.argl);

159

del_trafolist(tl — u.func.arg2); break;

default : break; A No pointer attributes */
}
del_trafolist(tl — next); free(tl);
}

}

[+ Clears the nodes used by subscripts x/

del_sublist(dp) dim_ptr dp;
{ if (dp # NULL)
{ del_sublist(dp — next);
free(dp); }
}

[+ Deletes the statementlist (with it expressions) pointed to by s x/

del_stmtlist(s) stmt_ptr s;
{if (s # NULL)
{if ((s — kind # K_LINKUP) && (s — kind # K_LINKIFUP))
{ switch (s — kind)
{ case K_DO: del_expr(s — u.do_loop.index);
del_expr(s — u.doloop.exprl);
del_expr(s — u.doloop.expr2);
del_expr(s — u.doloop.expr3);
del_stmtlist(s — u.do_loop.body); break;
case K_LASSIGN: del_expr(s — u.assign.lhs);
del_expr(s — u.assign.rhs); break;
case K_.LOGICIF: del_expr(s — u.s-if.condition);
del_stmtlist(s — u.s_if.body); break;
case K_.GENIF: del_expr(s — u.s.if.condition);
del_stmtlist(s — u.s_if.body); break;
/« WHILE %/ case K.WHILE: del_expr(s — u.s.if.condition);
del_stmtlist(s — u.s_if.body); break;
case K ELSEIF: del_expr(s — u.s_if.condition); break;
case K_ELSE: break;
case K. STOP: break;

default: printf("**x Corrupt\n"); exit(1);
}
del_stmtlist(s — next);
}
free(s);

¥
¥

del_expr(e) expr_ptr e;

160

{if (e # NULL)
{ switch(e — kind)
{ case E.ZVAR: del_dimlist(e — u.var.dim_list); break;
case E_CONST: break;
case E.VEC: del_expr(e — u.vec.el);
del_expr(e — u.vec.e2);
del_expr(e — u.vec.e3); break;
default: del_expr(e — u.operands.argl);
del_expr(e — u.operands.arg2); break;
}

free(e);
}
}

del_dimlist(d) sub_ptr d;
{if (d # NULL)
{ del_expr(d — head);
del_dimlist(d — tail);
if ((d — normexpr) # NULL) free(d — normexpr);
free(d);
}
}

/x Stack Procedures for integer */

intpush(i) int i;
{ static int INT_CUR = INTSTACK;

intstack[intp++] = i;

if (intp > INT_CUR)
{ INT_CUR += 20; printf("More int\n");

intstack = (int *) new_mem/(intstack,(INT_CUR x sizeof(int)));
}

}

int intpop()
{ if (intp > 0) return (intstack|——intp]);
else { printf("*** Int Stack underflow\n"); return 0; }

}

[Stack Procedures for expr pointers x/

e_push(p) expr_ptr p;
{ static int E.CURSIZE = E_STACKSIZE;

e_stacklesp++] = p;

161

if (esp > E_.CURSIZE)
{ E.CURSIZE += 30;
e_stack = (expr_ptr %) new_mem(e_stack,(E_CURSIZE x sizeof(expr_ptr)));

¥
}

expr_ptr e_pop()
{ if (esp > 0) return (e_stack|——esp]);
else { printf("*** Expr Stack underflow\n");return NULL; }

}

[Stack Procedures for stmt pointers x/

s_push(p) stmt_ptr p;
{ static int S.CURSIZE = S_STACKSIZE;

s_stack[ssp++] = p;
if (ssp > S_.CURSIZE)
{ S.CURSIZE += 200;
s_stack = (stmt_ptr %) new_mem(s_stack,(S_.CURSIZE x sizeof(stmt_ptr)));

}
}

stmt_ptr s_pop()
{ if (ssp > 0) return (s_stack|——ssp));
else { printf("*** Stmt Stack underflow\n"); return NULL; }

}

/* Generates an error if a label has already been defined x/

is_unique(1b) int 1b;
{ register int i; int ok = 1;
static int L_.CURSIZE = NUMLABELS;

for (i = 0; i < labelpt; i++)
if (1store[i] == 1lb)
{ sayerror("Label has already been set"); ok = 0; break; }
if (ok) l_store[labelpt++] = 1b;
if (labelpt > L_CURSIZE)
{ L_.CURSIZE += 80;
lstore = (int *) new_mem(l_store,(L_.CURSIZE x sizeof(int))); }

}

[+ Stack Procedures for trafo pointers x/

t_push(p) trafo_ptr p;

162

{ static int T_.CURSIZE = T_STACKSIZE;

t_stack[tsp++] = p;
if (tsp > T_CURSIZE)
{ T_.CURSIZE += 20;
t_stack = (trafo_ptr *) new_mem(t_stack,(T_CURSIZE x sizeof(trafo_ptr)));
}
}

trafo_ptr t_pop()
{ if (tsp > 0) return (t_stack|——tsp));
else { printf("*** Trafo Stack underflow\n"); return NULL; }

}

/¥ Returns true if variable is currently used as loop index
(value returned is index in Ipname + 1) */

int is_loopindex(vr) int vr;
{ register int i;

for (i=0; i<stackpt; i++)
if (vi == lpname]i]) return (i + 1);
return 0;

}

/+ Returns the number of items on the stack %/
stacksize() { return stackpt; }

[+ Stack procedures to check DO & CONTINUE pairs
The symboltable entry of the loop variable is stored in Ipname x/

stack(lb,vr) int lb,vr;
{ lpname][stackpt] = vr; stck[stackpt++] = 1b;
if (stackpt > NESTSIZE)
{ printf("*** Nesting of DO-loops too deep\n"); exit(1); }

}

unstack(expl) int expl;
{ if (stackpt < 0)
sayerror("CONTINUE unexpected");
else if (stck[——stackpt] # expl)
sayerror("Incorrect CONTINUE label");
}

[+ Initializes the stack pointers for the FORTRAN 77 parser x/

163

fstacks_init() { stackpt = ssp = esp = intp = labelpt = 0; }
[+ Initializes the stack pointer for the trafo parser %/

tstack_init() { tsp = 0; }

L. Data Dependence Storage Routines

[Source to Source Compiler
by Aart J.C. Bik
Procedures for dependences storage */

#include "prgtype.h"
#include <stdio.h>

#define MAXDEP 4000

/x Initial Max. number of dependences in the dependence table %/
#define MAXFLAGS 4000

/x Initial Max. number of direction flags */

/x The dependence table data structure %/

int *1n01,%n02; [« [MAXDEP] %/
char xkdl,xkd2,xkinddep; [« [MAXDEP] %/
int xdepvar,xdepvarpos; [« [MAXDEP] %/
long int *nod,; [« [MAXDEP] %/
char *dflags; & [MAXFLAGS] */

Jx Administration Variables %/
int deppt,dflag;

long int dep_number;

FILE xdepfile;

/x External Variables x/

extern char xcharco,myflags|]|;
extern int minnest,stackpt;
extern expr_ptr varl,e_v[[;

/x Allocates memory for the dependence table */

dep_memory()
{nol = (int x*) alloccmem(MAXDEP x sizeof(int));

164

no2 = (int x*) alloccmem(MAXDEP x sizeof(int));
kdl = (char x) allocmem(MAXDEP x sizeof(char));
kd2 = (char %) alloccmem(MAXDEP x sizeof(char));
kinddep = (char *) alloc_mem(MAXDEP x sizeof(char));
depvar = (int *) alloc.mem(MAXDEP x sizeof(int));

nod = (long int) alloc.mem(MAXDEP x sizeof(long int));
depvarpos = (int x*) alloccmem(MAXDEP x sizeof(int));
dflags = (char %) alloccmem(MAXFLAGS x sizeof(char));
deppt = 0; /« dependence table empty */

/x Initializes the dependence table pointers x/
dep-init() { dflag = deppt = 0; }
/x Writes the dependence table to the file program.dep %/

dep_dump(lv) int lv;
{ register int i; int noi,noo,nof noa;

noi = noo = nof = noa = 0;
depfile = fopen("program.dep","w");
if (depfile == NULL)
printf("*** Error: can't open program.dep");
else { fprintf(depfile,"Dependence\t\t Variable Number\n\n");
for (i=0; i < deppt; i++)
{ switch(kinddepli])
{ case FLOW: nof++; break;
case ANTI: noa++; break;
case OUTPUT: noo++; break;
case INPUT: noi++; break;
default: printf("**x Corrupt\n"); exit(1); }
if (v #1) && (Iv #3)) || (kinddep[i] # INPUT)) &&
(v £ 2) &k (v £3) |
(k1] == Sj) &k kd2[i] == Sj)))
{ switch(kd1[i])
{ case Sj: fprintf(depfile,"S"); break;
case Cj: fprintf(depfile,"C"); break;
case Lj: fprintf(depfile,"L"); break;
default: printf("**x Corrupt\n"); exit(1); }
fprintf(depfile,"%i",nol[i]);
switch(kinddepli])

{ case FLOW: fprintf(depfile," d-flow "); break;
case ANTI: fprintf(depfile," d-anti "); break;
case OUTPUT: fprintf(depfile," d-outp "); break;
case INPUT: fprintf(depfile," d-input "); break;

165

default: printf("**x Corrupt\n"); exit(1); }
fprintf(depfile,"%s\t",&dflags[depvarpos|i]]);
switch(kd2[i])
{ case Sj: fprintf(depfile," S"); break;
case Cj: fprintf(depfile," C"); break;
case Lj: fprintf(depfile," L"); break;
default: printf("*** Corrupt\n"); exit(1); }
fprintf(depfile,"%i\t\t%s\t",no2[i],st_pos(depvar[i]));
if (nod[i] < 0)
fprintf(depfile," ?\n");
else fprintf(depfile,"%1d\n" ,nod[i]);

!

fprintf(depfile," \nNumber of static input dependences : %i",noi);
fprintf(depfile," \nNumber of static output dependences : %i",noo);
(
(

}

fprintf(depfile," \nNumber of static flow dependences : %i",nof);
fprintf(depfile," \nNumber of static anti dependences : %i",noa);
fprintf(depfile,"\n\nTotal number of static dependences : %i\n",deppt);
fclose(depfile);

¥
¥

/* Returns true if there are dependences %/
int dep_defined() { return (deppt > 0); }

dep-add(kind, kil,ki2,n1,n2) char kind,kil ki2; int nl,n2;
{ register int i;

static int DEPSYM = MAXDEP;

static int FLAG = MAXFLAGS;

/¥ Both DEPSYM and FLAG grow at the same rate (emp.) %/

if (dep_number # 0)
{ if (deppt > DEPSYM)
{ /* Allocates more Memory %/
DEPSYM += 8000;

nol = (int *) new_mem(nol,DEPSYM = sizeof(int));
no2 = (int *) new_mem(no2,DEPSYM = sizeof(int));
kdl = (char %) new_mem(kd1,DEPSYM x sizeof(char));
kd2 = (char %) new_mem(kd2,DEPSYM x sizeof(char));

kinddep = (char *) new_mem (kinddep, DEPSYM x sizeof(char));

depvar = (int *) new_mem(depvar, DEPSYM x sizeof(int));
depvarpos = (int #*) new_mem(depvarpos, DEPSYM x sizeof(int));

nod = (long int %) new_mem(nod, DEPSYM x sizeof(long int));

}

166

if ((dflag+2+minnest) > FLAG)
{ /* Allocates more memory %/

FLAG += 8000;

dflags = (char %) new_mem(dflags,FLAG x sizeof(char)); }
nol[deppt] = nl; kdl[deppt] = kil;
no2[deppt] = n2; kd2[deppt] = ki2;
kinddep[deppt] = kind; depvar[deppt] = (varl — u.var.entry);
nod[deppt] = dep_number; depvarpos[deppt++| = dflag;
for (i=1; i<minnest; i++) dflags[dflag++] = myflags]i|;
dflags[dflag++] = '\0';

}

}

int flags_equal(i,f) int i,f;
{ register int r;
int bool = 1;

for (r = 0; r < stackpt; r++)
switch(dflags[i++])
{ case '<' : bool = 0; break;
case '+' : bool = 0; break;
case '\0': bool = 0; break; /* Nesting not correct x/
}
while ((bool) && (charco[f] # '\0"))
{ switch(dflags[i++])

{ case '<':
bool = ((charco[f] == '<") || (charco[f] == '*')); break;
case '>':
bool = ((charco[f] == '>") || (charco[f] == '*')); break;
case '[':
bool = (charcolf] # '>'); break;
case '] :
bool = (charcolf] # '<'); break;
case '=':
bool = ((charco[f] == '=") || (charco[f] == '*')); break;

case '+' : bool = (charco[f] # '='); break;

case 'x' : break;

case '\0': bool = 0; break; /« Nesting not correct %/
default : printf("*** Corrupt\n"); exit(1);

1
4+
1

return bool;

}

/* Checks the particular statement kinds x/

167

int in_if(s,n,k) stmt_ptr s; int n; char k;

{if (k == Cj) && (s — u.s.if.condno == n))
return 1;
else return in_slist(s — u.s_if.body,n,1.k); }

[+ Tests if a statement appears in the statement list x/

int in_slist(s,n,hd,k) stmt_ptr s; int n,hd; char k;
{ int bool = 0;

while ((s # NULL) && (bool == 0))
{ switch(s — kind)
{ case K_-DO if ((k == Lj) && (s — u.doloop.loopno == n))

bool = 1;
else bool = in_slist(s — u.do_loop.body,n,1,k);
break;
case K_LASSIGN : if ((k == Sj) && (s — u.assign.stmtno == n))
bool = 1;
break;

case K LOGICIF : bool = in_if(s,n,k); break;
case K.GENIF : bool = in_if(s,n,k); break;
case K ELSEIF : bool = in_if(s,n,k); break;
[+ WHILE %/ case K. WHILE : bool = in_if(s,n,k); break;
case K_LINKIFUP: hd = 1; break;
case K LINKUP : hd = 1; break;
default : break;
}
if (hd) s = NULL;
else s = s — next;

}

return bool;

}

int in_expr(ex,vr) expr_ptr ex; int vr;
{ if (ex == NULL) return 0;
else switch(ex — kind)
{ case EZVAR: return (ex — u.var.entry == vr);

case E_.CONST: return 0;

case EZVEC: return ((in_expr(ex — u.vec.el,vr)) ||
(in_expr(ex — u.vec.e2,vr)) ||
(in_expr(ex — u.vec.e3,vr)));

default: return ((in-expr(ex — u.operands.argl,vr)) ||
(in_expr(ex — u.operands.arg2,vr)));

}

168

int on_vars(on,vr) int on,vr;
{ if (on == —1) return 1;
else return (in_expr(e_v|[on],depvar|vr]));
}

* Determines if there are no dependences of given kind with
g
given directions in the statementlists given, on the variables
in the expression specified x/

int nodep(sl,s2,h1,h2 f on kind) stmt_ptr s1,s2; int h1,h2,f,on; char kind,;
{ register int i;
int bool=1;

for (i = 0; i < deppt; i++)
if ((kinddep[i] == kind) && (flags_equal(depvarpos[i],f)) &&
(on_vars(on,i)) && inslist(s1,nol[i],h1,kd1[i]) &&
in_slist(s2,n02[i],h2,kd2]i]))
{ bool = 0; break; }
return bool;

}

M Data Dependence Analysis Routines

[Source to Source Compiler
by Aart J.C. Bik
Procedures for Data-Dependence Analysis x/

#include <stdio.h>
#include "prgtype.h"

#define OutOut 10
#define InOut 11
#define Outln 12
#define InIn 13

/¥ Administration variables for Data Dependence Analysis %/

int mynest,hisnest,minnest,*nl,*n2,hisnumber,mynumber,flowpos,ifnest;

char depkind,mykind,hiskind;

int envl[NESTSIZE],mylknown[NESTSIZE],my2known|[NESTSIZE];

int lower[NESTSIZE],upper[NESTSIZE],stride[NESTSIZE];

int env2[NESTSIZE],hislknown[NESTSIZE], his2known|[NESTSIZE] rolldep[2];

int lower2[NESTSIZE|,upper2[NESTSIZE],stride2[NESTSIZE],invdep[NESTSIZE];
char myflags[NESTSIZE+1],invchar[NESTSIZE][NESTSIZE+1];

char rollchar[2][NESTSIZE+1];

169

expr_ptr dumexprl,dumexpr2,crtout,crtin,otherset,varl,var2,set2;
/* Administration variables for Determination of underlying number %/

int colll[NESTSIZE],coll2[NESTSIZE],al,a2,a3,a4,ul,u2,d12,d34;
int arec[6],mrec[6],nrec[6],str[6];

long int arraynum(),scalarnum();

/x External Variable %/

extern long int dep_number;

/+ Computes the Data-Dependences in the program x/

datadep_analysis(prg) stmt_ptr prg;
{ static make node = 1;
printf("\nComputing Data Dependences\n");
if (make_ node)
{ make_dummies(); make node = 0; }
dep_init(); mynest = 0; dep-it(prg);

}

make_dummies()
{ /* Make dummy add-nodes for multiple insets in DO-loops %/
dumexprl = (expr_ptr) alloc_mem(sizeof(struct expr_node));
dumexprl — kind = E_ADD;
dumexprl — u.operands.arg2 = (expr_ptr) alloc_mem(sizeof(struct expr_node));
dumexprl — u.operands.arg2 — kind = E_ADD;
dumexpr2 = (expr_ptr) alloc_mem(sizeof(struct expr_node));
dumexpr2 — kind = E_ADD;
dumexpr2 — u.operands.arg2 = (expr_ptr) alloc_mem(sizeof(struct expr_node));
dumexpr2 — u.operands.arg2 — kind = E_ADD;

}

/x Handles a single statement %/

dep-it(s) stmt_ptr s;
{ register int i;

if ((s # NULL) && (s — kind # K_LINKUP) && (s — kind # K_LINKIFUP))
{ /* Recovers ’his’ environment */
minnest = mynest; hisnest = mynest; ifnest = 0; flowpos = 1;
for (i = 0; i < minnest; i++)
{ lower2]i] = lowerli]; upper2[i] = upper][i;
stride2[i] = strideli]; env2[i] = env1]i];

170

hislknown[i] = mylknown[i]; his2known[i] = my2known][i]; }
switch(s — kind)
{ case K_DO: dep_do(s); mynest++; dep-it(s — u.do_loop.body);
mynest——; break;

case K_ASSIGN: dep_assign(s); break;

case K. LOGICIF: dep_genif(s); dep-it(s — u.s_if.body); break;
case K_.GENIF: dep_genif(s); dep-it(s — u.s_if.body); break;
case K_LELSEIF: dep_elseif(s); break; / Body in next %/

case K_LELSE: break;

case K.STOP: break;

case K.WHILE: break; 4 WHILE %/

default: printf("*** Corrupt\n"); exit(1);

}

dep-it(s — next);

}

/* Computes the Data Dependences in which a do loop is involved %/

dep_do(s) stmt_ptr s;
{int Dbl
double d;

mynumber = s — u.do_loop.loopno; mykind = Lj;
/x Create one INSET «/
(dumexprl — u.operands.argl) = (s — u.do_loop.exprl);
(dumexprl — u.operands.arg2 — u.operands.argl) = (s — u.do_loop.expr2);
(dumexprl — u.operands.arg2 — u.operands.arg2) = (s — u.do_loop.expr3);
crtin = dumexprl; crtout = s — u.do_loop.index;
Jx Test Self Dependence First x/
hiskind = mykind; hisnumber = mynumber;
/+ Do not filter on mynest > 0 (self antidependences too !) x/
otherset = crtout; dep_compare(OUT);
if (mynest > 0) { otherset = crtin; dep_compare(IN); }
/¥ Set Environment and Loop over the Following Statements x/
d = cast_expr(s — u.doloop.exprl, REALTYPE,&bl).f;
if ((bl) && ((d = ((int)d)) ==0))
{ lower2|hisnest| = lower[mynest| = (int) d;
hislknown hisnest] = mylknown[mynest] = 1; }
else { mylknown[mynest] = hislknown[hisnest] = 0; }
d = cast_expr(s — u.doloop.expr2, REALTYPE,&bl).f;
if ((bl) && ((d = ((int)d))==0))
{ upper2|hisnest] = upper[mynest] = (int) d;
his2known hisnest] = my2known[mynest] = 1; }
else { my2known[mynest] = his2known[hisnest] = 0; }
if (s — u.doloop.expr3 # NULL)

171

{ d = cast_expr(s — u.do_loop.expr3,REALTYPE,&bl).f;
if ((bl) && ((d = ((int)d))==0))
stride2[hisnest] = stride[mynest] = (int) d;
else stride2[hisnest| = stride[mynest] = 0; }
else stride2[hisnest] = stride[mynest] = 1;
env2[hisnest++| = envl[mynest] = ((s — u.doloop.index) — u.var.entry);

dep_dofollowing(s — u.doldoop.body); / Uses linkup */

}

/x Determines if variable at index is not a loop-control variable x/

int is_free(index) int index;
{ int free=1; register int i;

for (i = 0; i < mynest; i++)
if (envl[i] == index) { free = 0; break; }
if (free) for (i = 0; i < hisnest; i++)
if (env2[i] == index) { free = 0; break; }
return free;

}

/+ Computes the Data-Dependences in which an assignment is involved /

dep_assign(s) stmt_ptr s;
{ mykind = Sj; mynumber = s — u.assign.stmtno;

crtout = s — u.assign.lhs; crtin = s — u.assign.rhs;
Jx Test Self Dependence First x/
hiskind = mykind; hisnumber = mynumber;
/x Do not filter on mynest > 0 (self antidependences too !) /
otherset = crtout; dep_compare(OUT);
if (mynest > 0) { otherset = crtin; dep_compare(IN); }
dep_dofollowing(s — next);

}

/+ Computes the Data-Dependences in which an if statement is involved %/

dep_genif(s) stmt_ptr s;
{ if (s — w.s.f.condition — kind # E_CONST)

{ /* Do only examine rest for non-constants ! %/
mykind = Cj; mynumber = s — u.s_if.condno;
crtout = NULL; crtin = s — u.s_if.condition;

/x Test Self Dependence First x/
if (mynest > 0)

{ hiskind = mykind; hisnumber = mynumber;

otherset = crtin; dep_compare(IN); }

172

ifnest++; dep_dofollowing(s — u.s_if.body); /* uses linkup =/
}
}
/+ Computes the Data-Dependences in which an elseif statement is involved %/

dep_elseif(s) stmt_ptr s;
{ if (s — wu.s.f.condition — kind # E_CONST)

{ /* Do only examine rest for non-constants ! %/
mykind = Cj; mynumber = s — u.s_if.condno;
crtout = NULL; crtin = s — u.s_if.condition;

/x Test Self Dependence First x/

if (mynest > 0)

{ hiskind = mykind; hisnumber = mynumber;

otherset = crtin; dep_compare(IN); }

ifnest++; dep_dofollowing(s — next); /*+ Body in next x/

}
}
/x Loops over every following statement x/

dep_dofollowing(s) stmt_ptr s;
{ if (s # NULL)
{ switch(s — kind)
{ case K_LASSIGN: dep_followassign(s); break;
case K LOGICIF: dep_followif(s); break;
case K.GENIF: dep_followif(s); break;
case K_ELSEIF: dep_followelse(s); break;
case K_ELSE: dep_followelse(s); break;
case K_DO: dep_followdo(s); break;
case K_LINKUP: if ((——hisnest) < minnest) minnest = hisnest;
dep_dofollowing(s — next — next); break;
case K_LINKIFUP: if ((——ifnest) < 0) ifnest = 0; flowpos = 1;
dep_dofollowing(s — next — next); break;
case K. STOP: dep_dofollowing(s — next); break;
case K. WHILE: break; /+ WHILE %/
default: printf("*** Corrupt\n"); exit(1);

}
}
}

/* Handles a following assignment x/
dep_followassign(s) stmt_ptr s;

{ hiskind = Sj; hisnumber = s — u.assign.stmtno;
otherset = s — u.assign.lhs;

173

dep_compare(OUT); /x Compare i and out Sj */
otherset = s — u.assign.rhs;

dep_compare(IN); /¥ Compare i and in Sj */
dep_dofollowing(s — next);

}

/+ Handles a following if statement x/

dep_followif(s) stmt_ptr s;
{ hiskind = Cj; hisnumber = s — u.s_if.condno;
otherset = s — u.s_if.condition;
dep_compare(IN); /¥ Compare i and in Cj %/
ifnest++; dep_dofollowing(s — u.s_if.body); /* Uses linkup =/

}

/+ Handles a following else(if) statement x/

dep_followelse(s) stmt_ptr s;
{ if (ifnest == 0) flowpos = 0;
if (s — kind == K_ELSEIF)
{ otherset = s — u.s_if.condition;
hiskind = Cj; hisnumber = s — u.s_if.condno;
dep_compare(IN); f« Compare i and in Cj %/ }
dep_dofollowing(s — next); /« Body in next x/

}

[+ Handles a following do loop %/

dep_followdo(s) stmt_ptr s;
{ double d; int bl;

hiskind = Lj; hisnumber = s — u.do_loop.loopno;
otherset = s — u.doloop.index;
dep_compare(OUT); /x+ Compare i and out Lj %/

/x Creates one INSET «/
(dumexpr2 — u.operands.argl) = (s — u.do_loop.exprl);
(dumexpr2 — u.operands.arg2 — u.operands.argl) = (s — u.do_loop.expr2);
(dumexpr2 — u.operands.arg2 — u.operands.arg2) = (s — u.do_loop.expr3);
otherset = dumexpr2; dep_compare(IN); /x+ Compare i and in Lj x/
J+ Changes ’his’ environment */
env2[hisnest] = s — u.do_loop.index — u.var.entry;
d = cast_expr(s — u.dodoop.exprl,REALTYPE &bl).f;
if ((bl) && ((d— ((int)d))==0))
{ lower2[hisnest] = (int) d; hislknown hisnest] = 1; }
else hislknown|[mynest] = 0;
d = cast_expr(s — u.dodoop.expr2, REALTYPE &bl).f;

174

if ((bl) && ((d = ((int)d))==0))

{ upper2/hisnest] = (int) d; his2known/hisnest] = 1; }
else his2known/hisnest] = 0;
if (s — u.doloop.expr3 # NULL)

{ d = cast_expr(s — u.do_loop.expr3,REALTYPE,&bl).f;

if ((bl) && ((d = ((int)d))==0))
stride2[hisnest] = (int) d;

else stride2[hisnest] = 0; }

else stride2[hisnest] = 1; hisnest+-+;
dep_dofollowing(s — u.doJdoop.body); /+ Uses linkup */

}

/¥ Actual Data Dependence test between the currentsets and otherset %/

dep_compare(dir) int dir;
{ if (dir == OUT)
{ set2 = otherset; depkind = OutOut; dep_genl(crtout);
set2 = otherset; depkind = InOut; dep_genl(crtin); }
else { jx dir == IN %/
set2 = otherset; depkind = Outln; dep_genl(crtout);
set2 = otherset; depkind = Inln; dep_genl(crtin); }

}

[+ Generates all tests between arbitrary sets */

dep_genl(auxl) expr_ptr auxl;
{ sub_ptr sublist;

if (aux1 # NULL)
switch(auxl — kind)
{ case EZVAR: varl = auxl; dep_gen2(set2);
/x Handles hidden INSET x/
intpush(depkind);
switch(depkind)
{ case OutOut: depkind = InOut; break;
case Outln: depkind = Inln; break;
}
sublist = aux1 — u.var.dim_list;
while (sublist # NULL)
{ dep-genl(sublist — head);
sublist = sublist — tail; }
depkind = intpop(); break;
case E_ZNOT: dep_genl(auxl — u.operands.argl); break;
case E_UMIN: dep_genl(auxl — u.operands.argl); break;
case E_CONST: break;
case E_ZVEC: dep_genl(auxl — u.vec.el);

175

dep_genl(auxl — u.vec.e2);
dep_genl(auxl — u.vec.e3); break;

default: dep_genl(auxl — u.operands.arg2);
dep_genl(auxl — u.operands.argl); break;

}
}

/* Generates all tests between varl and a set */

dep_gen2(aux2) expr_ptr aux2;
{ sub_ptr sublist;

if (aux2 # NULL)
switch(aux2 — kind)
{ case EZVAR: /x Only consider identical ’free’ variables %/
if ((varl — u.var.entry == aux2 — u.var.entry)
&&
(((mykind == Lj) && (hiskind == Lj))
|| (isfree(varl — u.var.entry))))
{ var2 = aux2; dep_vars(); }
[+ Handles hidden INSET %/
intpush(depkind);
switch(depkind)
{ case OutOut: depkind = Outln; break;
case InOut: depkind = Inln; break;
}
sublist = aux2 — u.var.dim_list;
while (sublist # NULL)
{ dep-gen2(sublist — head);
sublist = sublist — tail; }
depkind = intpop(); break;
case EZNOT: dep_gen2(aux2 — u.operands.argl); break;
case E_UMIN: dep_gen2(aux2 — u.operands.argl); break;
case E_CONST: break;
case EZVEC: dep_gen2(aux2 — u.vec.el);
dep_gen2(aux2 — u.vec.e2);
dep_gen2(aux2 — u.vec.e3); break;
default: dep_gen2(aux2 — u.operands.argl);
dep_gen2(aux2 — u.operands.arg2); break;

}

/* Returns the matching direction of two directions
"I’ returned if no such direction can be found /

176

char dep_matchdir(cl,c2) char cl,c2;
{ switch(cl)
{ case "*': return c2;
case '=':if ((c2 == "+") || (2 == "<") || (c2==">"))
return '!';
else return '="';
case '<':if ((c2==">") || (2=="=")|] (c2=="1"))
return '!';
else return '<';
case '>':if ((c2=="=") || (c2=="<") || (c2=="1["))
return '!';
else return '>';
case '[': switch(c2)
{ case "*': return '['; case '="': return '=';
case '<':return '<';case '>':return '!';
case '[': return '['; case ']': return '="';
case '+':return '<';
default: printf("*** Corrupt\n"); exit(1);

}

case ']': switch(c2)

{ case "*': return ']'; case '="': return '=';
case '<':return '!'; case '>': return '>';
case '[': return '='; case ']': return ']';

case '+':return '>';
default: printf("*** Corrupt\n"); exit(1);
}
case '+': switch(c2)
{ case "*': return '+'; case '=": return '!";
case '<':return '<'; case '>': return '>';
case '[': return '<'; case ']': return '>';
case '+':return '+';
default: printf("*** Corrupt\n"); exit(1);
}
default: printf("*** Corrupt\n"); exit(1);
}
}

Jx Turns the direction vector around */

turn()
{ register int i;

for (i=1; i<minnest; i++)
{ switch (myflags]i])
{ case '>': myflags[i] = '<'; break;
case '<': myflags[i] = '>'; break;

177

case ']': myflags[i] = ' ['; break;
case '[': myflags[i] = ']"'; break;
}
}
}

[+ Determines the dependence using the direction vector */

dep_vector(vecdir) char vecdir;

{int self;
char dep;
if (vecdir == '>") turn();
self = ((mynumber # hisnumber) || (mykind # hiskind));
switch(depkind)
{ case InIn:
switch(vecdir)

{ case '<': self = 1; dep = INPUT; break;
case '>': self = 1; dep = INPUT; break;
case '=': dep = INPUT; break; } break;
case InOut:
switch(vecdir)
{ case '<': self = 1; dep = ANTI; break;
case '>': self = 1; dep = FLOW; break;
case '=': self = 1; dep = ANTTI; break; } break;
case Outln:
switch(vecdir)
{ case '<': dep = FLOW,; break; /« do not allow self here %/
case '>': dep = ANTTI; break; /« it has been handled by x/

case '=': dep = FLOW; break; } break; j InOut ! */
case OutOut:
switch(vecdir)

{ case '<': self = 1; dep = OUTPUT; break;
case '>': dep = OUTPUT; break; / no self again! x/
case '=': dep = OUTPUT; break; } break;
default: printf("*** Corrupt\n"); exit(1);
}
if (self)
{ if (vecdir == '>") dep_add(dep,hiskind,mykind, hisnumber,mynumber);
else dep_add(dep,mykind,hiskind,mynumber, hisnumber); }
if (vecdir == '>") turn();

}

/* Handles < and > directions %/

dome(i,c) int i; char c;

178

{ register int r;
int index;

index = (c == '<') 7 0 : 1; myflags[i] = c;
if (1==1) && (rolldeplindex]) && (abs(stride[0]) > 1))

for (r = 1; r < minnest; r++) myflags[r| = rollchar[index]|r];
if ((rolldep[index]) || (i > 1)) dep_vector(c);

}

/x Determines the dependences caused by two variables with the same name %/

dep_vars()
{ register int i,r;
int le,depassum=1,coll,ct=0;

sub_ptr sublist1,sublist2;
dim_ptr dimlist;

/* Number determination preparation %/

dep_-number = —1; lc = st_returndim(varl — u.var.entry);
coll = ((Ic > 0) && ((mynest + hisnest) > 0)) 7 1 : 0;
if (coll)

for (i=0; i < mynest; i++)
if ((mylknownli]) && (my2knownli]) && (stride[i])
&& (streturntype(envli]) == INTTYPE)) colll[i] = 0;
else { coll = 0; break; }
if (coll)
for (i=0; i < hisnest; i++)
if ((hislknownl[i]) && (his2knownl[i]) && (stride2[i])
&& (streturntype(env2]i]) == INTTYPE)) coll2[i] = 0;
else { coll = 0; break; }
if (Ic > 0)
{ sublistl = varl — u.var.dim list;
sublist2 = var2 — u.var.dim_list;
dimlist = st_returndimlist(varl — u.var.entry);
for (i=1; i < minnest; i++) myflags[i] = "*';
[* Prepare inv. optimization /
for (r = 0; r < minnest; r++)
{ invdep[r] = 1;
for(i=1;i<r+ 1;i++)
invchar[r][i] = '=";
for (i = r 4 2; i < minnest; i++)
invchar[r][i] = '*';
¥
/x Prepare roll optimization x/
rolldep[0] = rolldep[1] = 1;

179

rollchar[0][1] = '<'; rollchar[1][1] = '>";
for (i = 2; 1 < minnest; i++)
rollchar[0][i] = rollchar[1][i] = "*';
while ((sublistl # NULL) && (depassum))
{ if (((sublistl — normexpr) # NULL) &&
((sublist2 — normexpr) # NULL))
{ nl = sublist] — normexpr; n2 = sublist2 — normexpr;
depassum = dep_norm(&lc);
}
else coll = 0;
sublistl = sublistl — tail;
sublist2 = sublist2 — tail;

/¥ number determination %/
if ((coll) && (depassum))
{ for (i=0; i < mynest; i++)
colll[i] += (nl[i] * coll);
for (i=0; i < hisnest; i4++)
coll2[i] —= (n2[i] * coll);
ct —= nl[mynest] * coll; ¢t += n2[hisnest] * coll;
if (dimlist # NULL)
{ coll *= ((dimlist — high) — (dimlist — low) + 1);
if (coll < 0) coll = 0;
dimlist = dimlist — next;
}

else coll = 0;
}
}
if ((depassum) && (coll))
{ int nonz=0;
for (i=0; i < minnest; i++) if (colll[i]) nonz++;
for (i=0; i < hisnest; i++) if (coll2[i]) nonz++;
if (nonz < 4)
dep_number = arraynum(ct);

}

}
if ((depassum) && (lc > 0) && (minnest > 0))

{ /* Takes care of directed dependences %/
int busy=1;

i=1;
while (busy)
{ switch(myflags|i])
{ case '<': dome(i,'<"); busy = 0; break;
case '>': dome(i,'>"); busy = 0; break;
case '+': dome(i,'<"); dome(i,'>"); busy = 0; break;

180

case '=': busy = ((invdep[i—1]) && (i < minnest));
for (r = 1; r < minnest; r++)
myflags[r] = invchar[i—1][r];
if ((i == minnest) && (flowpos) && (invdep[i—1]))
dep_vector('=");

else i++;
break;
case '[': dome(i,'<"); myflags[i] = '="; break;
case ']"': dome(i,'>"); myflags[i] = '="'; break;
case '*': dome(i,'<'); dome(i,'>"); myflags[i| = '="; break;
default: printf("**x Corrupt\n"); exit(1);

}
}
}
else if ((depassum) && ((lc == 0) || (minnest == 0)))

{int self;
char depl,dep2;

[Takes care of Scalar Like Variables x/
self = ((mynumber # hisnumber) || (mykind # hiskind));
switch(depkind)

{ case InIn: if (mynest == 0) dep_-number = scalarnum(0,0,0,1);
else if (hisnest == 0) dep_number = scalarnum(0,0,1,0);
depl = INPUT; dep2 = INPUT; break;

case InOut: if (lc == 0) dep-number = scalarnum(minnest,0,1,0);
depl = ANTI; dep2 = FLOW; self = 1; break;
case Outln: if (lc == 0) dep-number = scalarnum(minnest,0,0,1);
depl = FLOW; dep2 = ANTI, break;
case OutOut: if (Ic == 0) dep_number = scalarnum(minnest,0,0,0);
depl = OUTPUT; dep2 = OUTPUT; break;
default: printf("*** Corrupt\n"); exit(1);
}
for (i=1; i<minnest; i++) myflags[i] = '=";
if ((self) && (flowpos))
dep-add(depl,mykind,hiskind,mynumber,hisnumber);
i = minnest; / Ic > 0 implies minnest == 0 %/
while (i > 0)
{ switch(dep2)
{ case INPUT: dep_number = —1; break;
case OUTPUT: dep_-number = scalarnum(i—1,1,0,0); break;
case FLOW: dep_number = scalarnum(i—1,1,1,0); break;
case ANTI: dep_number = scalarnum(i—1,1,0,1); break; }
myflags[i] = '<'; /x Self and Wrap Dependences %/
dep-add(dep2,hiskind,mykind,hisnumber,mynumber);
myflags[i——] = '*';

}

181

}
}

[+ Determines if a dependence is possible with some invariant part %/

dep_invpart(diff) int diff;
{ register int i,r;
int saved1[NESTSIZE],saved2[NESTSIZE];
char saved3|[NESTSIZE];

for (r = 0; r < minnest; r++)
{ savedl[r] = nl[r]; saved2[r] = n2[r|; saved3[r+1] = myflags[r+1]; }
for (r = 0; r < minnest; r++)
if (invdeplr])
{ for (i = 1; i < minnest; i++)
if (dep-place(i—1,invchar[r][i]) == 0)
{ invdep[r] = 0; break; }
if (invdeplr])
{if (n2}x)
{ nl[r] = nl[r] — n2[r]; n2[r] = 0;
invdep[r] = performtests(diff);
}
[+ ‘else " ignore since coefficents were already zero
but update and continue for rest x/
if (invdeplr])
for (i = 1; i < minnest; i++)
invchar(r][i] = myflags][i];
else break;
}

else break;
}
else break;
for (r = 0; r < minnest; r++)
{ n1[r] = savedl[r]; n2[r] = saved2r|; myflags[r+1] = saved3[r+1]; }
}

rolldir(flag,diff) int flag,diff;
{ register int i;
int place=0;
char saved[NESTSIZE + 1],dirl="x*" dir2="x";

if ((flag) && (nl[0] # 0) && (n1][0] == n2[0]))
{ flag = 0;
for (i = 1; i < minnest; i++)
if (nlfi] # 0) || (n2[i] # 0))
{ if (nl[i] == n2]i]) { flag++; place = i; }

182

else flag = 2; }

if (flag == 1)
{ if ((n1[0] > 0) && (nl[place] > 0))
{ if (diff > —n1[0]) dirl = (diff == —nl[0]) ? ']"' : '>";

if (diff < n1[0]) dir2 = (diff == nl[0]) ? '[': '<'; }
else if ((n1[0] > 0) && (nl[place] < 0))

{ if (diff > —n1[0]) dirl = (diff == —nl[0]) ? '[' : '<";
if (diff < nl1[0]) dir2 = (diff == nl[0]) ? '1': '>'; }
else if ((n1[0] < 0) && (nl[place] > 0))

{ if (diff < —n1[0]) dirl = (diff == —nl[0]) ? '[' : '<";
if (diff > n1[0]) dir2 = (diff == nl[0]) 7 '] : '>'; }
else

{ if (diff < —n1[0]) dirl = (diff == —nl[0]) 7 '] "' : '>";

if (diff > n1[0]) dir2 = (diff ==nl[0]) 7 '[' : '<'; }
if (stride[0] < 0)
{ char tmp; tmp = dirl; dirl = dir2; dir2 = tmp; }
}
}
for (i = 1; i < minnest; i++)
saved[i] = myflags][i];
Jx < direction x/
for (i = 1; i < minnest; i++)
if (dep-place(i—1,rollchar[0][i]) == 0)
{ rolldep[0] = 0; break; }
if (rolldep[0]) rolldep[0] = dep_place(place,dirl);
for (i = 1; i < minnest; i++)
{ rollchar[0][i] = myflags]i]; myflags|i] = saved][i]; }
[x > direction x/
for (i = 1; i < minnest; i++)
if (dep-place(i—1,rollchar[1][i]) == 0)
{ rolldep[1] = 0; break; }
if (rolldep[1]) rolldep[1] = dep-place(place,dir2);
for (i = 1; i < minnest; i++)
{ rollchar[1][i] = myflags|i]; myflags|i] = saved][i]; }

}

Jx Auxiliary functions for data dependence tests %/

int down(a,l,u) int a,l,u;
{ if (a > 0) return (axl);
else return (axu);

}

int up(a,l,u) int a,l,u;
{ if (a > 0) return (a*u);
else return (axl);

183

}

int comp_ged(il,i2) int i1,i2;
{ if (i2 == 0) return il;
else return comp_ged(i2,(il % i2)); }

[+ Determines if a dependence (+ direction) exists
between two normalized expressions
note: at mynest is the first constant
at hisnest is the second constant
minnest loop variables are in common %/

int dep_norm(l) int *l;
{ int diff,dep=0;

register int i;

diff = n2[hisnest] — nl[mynest|;
/+ CONSTANT INDEX TEST x/
for (i=0; i < mynest; i++)
if (nl1[i]) { dep = 1; break; }
for (i=0; i < hisnest; i4++)
if (n2[i]) { dep = 1; break; }
if (dep)
dep = performtests(diff);
else if (diff == 0)
{dep =1; («)——; }
else dep = 0;
return dep;

}

/x Places a direction if still possible x/

int dep_place(p,c) int p; char c;

{ char c2;
if ((c == "<") [| (c == ">"))
{ if (stride[p] == 0) ¢ = "+';
else if (stride[p] < 0)
switch(c)
{ case '<': ¢ = '>'; break;
case '>': ¢ = '<'; break; }

}
elseif (c=="'0") || (c=="'1"))
{ if (stride[p] == 0) ¢ = "*';
else if (stride[p] < 0)
switch(c)

184

{case '[': ¢ = '"]"; break;
case ']':c = "'["'; break; }

}
c2 = dep_matchdir(c,myflags[p+1]);
if (c2=="1")
return 0;
else { myflags[p+1] = ¢2; return 1; }

}

[+ Performs some Data Dependence Analysis Tests on two
normalized expressions possibly at different nestings depth
- GCD test
- Bounds test x/

int performtests(diff) int diff;
{ register int i; int dep=1,c;

{ / GCD TEST #/
int gcd=0; ¢ = diff;
for (i=0; i<mynest; i++)
{ if (streturntype(envl[i]) # INTTYPE) { gcd = 1; break; }
if ((mylknownli]) && (stride[i]))
{ ged = comp_ged(ged,abs(stride[i] * nlli]));
¢ = ¢ — nl[i] * lower[i]; }
else if ((i < minnest) && (stride[i]) && (nl[i] == n2li]))
ged = comp_ged(ged,abs(strideli] * nlli]));
else ged = comp_ged(ged,abs(nl[i]));

}
for (i=0; i<hisnest; i++)
{ if (streturntype(env2[i]) # INTTYPE) { gcd = 1; break; }
if ((hislknownl[i]) && (stride2[i]))
{ ged = comp_ged(ged,abs(stride2][i] « n2[i]));
¢ = ¢ + n2[i] x lower2[i]; }
else if ((i < minnest) && (stride2[i]) && (n2[i] == nlli]))
ged = comp_ged(ged,abs(strideli] * n2li]));
else ged = comp_ged(ged,abs(n2[i]));
}
if (ged # 0) dep = ((abs(c) % ged) == 0);
}
{ /x Bounds TEST «/
int comp=1,max=0,min=0; int 1,u;
if (dep)
{ for (i=0; i<mynest; i++)
if ((mylknownli]) && (my2knownli]))
{ 1 = lower[i]; u = upper|i];

185

if (1 > u) { int temp; temp = 1; 1 = u; u = temp; }
min = min + down(nl[i],l,u);
max = max + up(nll[i],L,u); }
else if (nl[i] # 0) { comp = 0; break; }
[+ ignore zero coefficients x/
if (comp)
{ for (i=0; i<hisnest; i++)
if ((hislknownli]) && (his2known]i]))
{1 = lower2[i]; u = upper2[i;
if (1 > u) { int temp; temp = 1; 1 = u; u = temp; }
min = min + down((—n2[i]),l,u);
max = max + up((—n2[i]),l,u); }
else if (n2[i] # 0) { comp = 0; break; }
[+ ignore zero coefficients x/
if (comp)
dep = ((min < diff) && (diff < max));
}

}
}

{ /* Determine Direction */
int place,flag=1; static int not_active = 1;

if (dep)
{ /x DIFFERENT LOOP INDICES TEST %/
for (i=minnest; i < mynest; i++)
if (n1[i]) { flag = 0; break; }
for (i=minnest; i < hisnest; i++)
if (n2[i]) { flag = 0; break; }
if (flag) /* Only indices from common nest */
{ int num=0;
for (i = 0; i < minnest; i++)
if (1] £ 0) || (n2[] £ 0))
{ place = i; num++; }
if (num == 1)
/+ ONE LOOP-CONTROL VARIABLE x/
dep = dep_intersect(nl[place|,n2[place],diff,place);
}
if ((dep) && (not_active) && (minnest > 0))
{ not_active = 0; dep_invpart(diff); not_active = 1;
if ((minnest > 1) && (abs(stride[0]) > 1)) rolldir(flag,diff); }
}

}

return dep;

}

[+ Determines the direction vector using two linear subscript expressions /

186

int dep_intersect(c1,c2,diff,place) int c1,c2,diff,place;
{ if (c1 == ¢2) /x Parallel Lines %/
{ if (diff == 0) return(dep_place(place,'="));
else { if (((diff > 0) && (c1 > 0)) ||
((diff < 0) && (c1 < 0)))
return(dep_place(place,'>"));
else return(dep_place(place,'<")); }
}
else
{ /* Intersecting Lines %/
double isp;

isp = (((double) diff) / (c1 — ¢2));
switch(dep_detinterval(place,isp))
{ case 0:
return 1;
case 1:
if ((c1 > 0) && (c2 > 0))
{ if (c1 > ¢2) return(dep_place(place,'<"));
else return(dep_place(place,'>")); }
else if ((c1 < 0) && (2 <0))
{ if (¢2 < c1) return(dep_place(place,'>"));
else return(dep_place(place,'<")); }
else return 0; /x divergent x/
case 2:
if ((c1 > 0) && (c2 > 0))
{ if (c1 > ¢2) return(dep_place(place,'>"));
else return(dep_place(place,'<")); }
else if ((c1 < 0) && (2 <0))
{ if (¢2 < c1) return(dep_place(place,'<"));
else return(dep_place(place,'>")); }
else return 0; /x divergent x/
case 3:
if ((c1 > 0) && (c2 > 0))
{ if (c1 > ¢2) return(dep_place(place,' ['));
else return(dep_place(place,']")); }
else if ((cl1 < 0) && (2 <0))
{ if (¢2 < c1) return(dep_place(place,']"));
else return(dep_place(place,' [')); }
else return dep_place(place,'=");
case 4:
if ((c1 > 0) && (c2 > 0))
{ if (¢1 > ¢2) return(dep_place(place,']"));
else return(dep_place(place,' [')); }
else if ((c1 < 0) && (2 <0))

187

{ if (¢2 < c1) return(dep_place(place,' ['));
else return(dep_place(place,']")); }
else return dep_place(place,'=");

case b:

return dep_place(place,'=");

default:

printf("*** Corrupt\n"); exit(1);

}
}
}

/x Determines the interval of a loop variable %/

int dep_detinterval(p,x_) int p; double x_i;
{ if ((mylknownl|p]) && (my2known[p]) &&
(lower[p] == x4) && (upper[p] == x.i)) return 5;
else if (stride[p] > 0)
{ if ((mylknown|p]) && (lower[p] > xi))
return ((lower[p] > x4) 7 1 : 3);
else if ((my2known[p]) && (upper[p] < x4))
return ((upper[p] < x.i) 7 2 : 4);
else return 0;
}
else if (stride[p] < 0)
{if ((my2known[p]) && (upper[p] > x1))
return ((upper[p] > x.i) 7 1: 3);
else if ((mylknown[p]) && (lower[p] < x.))
return ((lower[p] < x1i) 7 2 : 4);
else return 0;
}
else if ((mylknown|p]) && (my2known[p]))
{ if ((lower[p] < xi) && (upper[p] < x.i))
return ((lower[p| < x.) && (upper[p] < x1i)) ? 2 : 4;
else if ((lower[p| > x.) && (upper[p] > x41))
return ((lower[p] > x.) && (upper[p] > x1i)) ? 1 : 3;
else return 0;

}

else return 0;

}

/¥ Determines the number of iteration using the loop-bounds %/

long int no_myiterations(p) int p;
{ long int noi = —1;

if ((mylknown[p]) && (my2known|p]) && (stride[p]))

188

{ noi = (long int) ((upper[p] — lower[p]) / stride[p]);
if (noi < 0) noi = 0;

else noi = noi + 1; }
return noi;

}

long int no_hisiterations(p) int p;
{ long int noi = —1;

if ((hislknown|p]) && (his2known[p]) && (stride2[p]))

{ noi = (long int) ((upper2[p] — lower2[p]) / stride2[p]);
if (noi < 0) noi = 0;

else noi = noi + 1; }
return noi;

}

/¥ These procedures tries to determine the number of
underlying dependences for scalar variables %/

long int scalarnum(r1,cross,my,his) int r1,cross,my,his;
{ long int number=1,temp;
register int i;

for (i=0;i< (rl —1);i++)

{ number *= no_myiterations(i); if (number < 0) break; }
if ((number > 0) && (cross))

{ temp = no_myiterations(rl);

if (temp == 0) number = 0;
else if (temp > 0) number x= (temp — 1);
else number = —1; }

if ((number > 0) && (my))

for (i = minnest; i < mynest; i++)

{ number *= no_myiterations(i); if (number < 0) break; }
if ((number > 0) && (his))

for (i = minnest; i < hisnest; i++)

{ number *= no_hisiterations(i); if (number < 0) break; }
return number;

}

/¥ Determines the number of underlying dependences for array variables %/
long int delta2(c) int c;
{ double ceil(),floor();

long int res;

res = (1 4+ ((long int) (floor(((double) ¢ * ul)/((double) a2)))) —

189

((long int) (ceil(((double) —c * u2)/((double) al)))));
if (res < 0) res = 0;
return res;

}

long int delta3(c) int c;
{ register int lab;
int j03,bound;
long int sum=0;

j03 = (¢ / a3) % d12; bound = (int) ((¢ — a3 * j03) / (a3 * d12));
for (lab=0; lab < bound; lab++)

sum += delta2(c — a3 % j03 — lab * a3 % d12);
return sum;

}

long int delta4(c) int c;
{ register int lab;
int mu,bound;
long int sum=0;

mu = (¢ / d12) % d34; bound = (int) ((c — d12 * mu) / (d12 % d34));
for (lab=0; lab < bound; lab++)
sum += delta2((c — mu * d12 — lab % d12 * d34))
delta2((mu % d12 + lab * d12 % d34));
return sum;

}

long int arraynum(c) int c;
{ int fac=1,count=0,gcd=0;
register int i;

for (i=0; i < mynest; i++)
if (colll[i])
{ arec[count] = coll1[i]; str[count] = stridel[i];
mrec|count] = lower[i]; nrec[count++] = upper|[i]; }
else fac *= no_myiterations(i);
for (i=0; i < hisnest; i4++)
if (coll2[i])
{ arec[count] = coll2[i]; str[count] = stride2[i];
mrec|count] = lower2[i]; nrec[count++] = upper2[i]; }
else fac *= no_hisiterations(i);
/x normalize loops */
for (i=0; i < count; i++)
{ ¢ = ¢ — mrec]i] * arec[i]; arec[i] = arec[i] * str]i];
nrecli] = (nrec[i] — mrecli]) / str[i];

190

if (nrecfi] < 0) { fac = 0; break; } / mrec[i] = 0; %/ }
Jx make all ai > 0 and recover mi = 0 constraint */
for (i=0; i < count; i++)
if (arec|i] < 0)
{ arec[i] = —arec[i]; ¢ = ¢ + arec[i] * nrecli]; }
[+ divide by ged(ai) */
for (i=0; i < count; i++)
{ ged = comp_ged(ged,arec[i]); nrec[i]++; }
if (ged # 0)
{ if ((c¢ % ged) # 0) count = —1;
else { ¢ = ¢/ ged;
for (i=0; i < count; i++) arec[i] = arec[i] / ged;
}
}
if (fac == 0) return 0;
else switch(count)
{ case —1: return 0;
case 0 : return fac;
case 1 : return fac; /x line and constant x/
case 2 :
al = arec[0]; a2 = arec[l]; set_us(al,a2);
return fac x (delta2(c) — delta2(c — alsnrec[0]) —
delta2(c — a2+#nrec[1]) + delta2(c — alsnrec[0] — a2+nrec[1]));
case 3 :
al = arec|[0]; a2 = arec[l]; a3 = arec[2]; set_us(al,a2);
return fac x (delta3(c) — delta3(c — alsnrec[0]) —
delta3(c — a2snrec[1]) — delta3(c — a3*nrec[2]) +
delta3(c — alsnrec[0] — a2xnrec[1]) +
delta3(c — alsnrec|[0] — a3xnrec[2]) +
delta3(c — a2snrec[l] — a3xnrec[2]) —
delta3(c — alsnrec[0] — a2xnrec[1l] — a3xnrec[2]));
case 4 :
al = arec|0]; a2 = arec[l]; a3 = arec[2]; a4 = arec|[3];
set_us(al,a2); d34 = comp_ged(a3,ad);
return fac x (deltad(c) — deltad(c — alxnrec[0])
— deltad(c — a2xnrec[1]) — deltad(c — a3*nrec(2])
— deltad(c — adsnrec|3])
+ deltad(c — alsnrec|[0] — a2s*nrec[1])
+ deltad(c — alsnrec|[0] — a3s*nrec|2])
+ deltad(c — alsnrec|0] — ads*nrec|3])
+ deltad(c — a2s*nrec[l] — a3*nrec|2])
+ deltad(c — a2+nrec[1] — adsnrec|3])
+ deltad(c — a3*nrec[2] — adsnrec|3])
— deltad(c — alsnrec|0] — a2xnrec[l] — a3xnrec|2])
— deltad(c — alsnrec|0] — a2xnrec[l] — adxnrec[3])
— deltad(c — alsnrec|0] — a3xnrec[2] — adxnrec|3])

191

— deltad(c — a2s#nrec[1] — a3s*nrec|2] — ads*nrec3])
+ deltad(c — alsnrec[0] — a2*nrec|[l] — a3*nrec|2] — adsnrec[3]));

}
}

set_us(n,m) int n,m;
{ int x1=1,x2=0,y1=0,y2=1;

while ((n # 0) && (m # 0))
if (n > m)
{x1 —=(n/m)*x2;yl —= (n/ m) *xy2;n= (n % m); }
else
{x2—=(m/n)*x1;y2 —=(m /n) *xyl; m= (m %n); }
if(n==0) {dl2=m;ul =x2;u2 =y2; }
else { d12 = n; ul = x1; u2 =yl; }

}

N Transformation Type Information

[Source to Source Compiler
by Aart J.C. Bik
Trafo Storage Information File %/

[+ Trafo Data Structure Information x/

#define T_DO 'a'
#define T_DOA 'b!
#define T_ASSIGN 'c'
#define T_IF 'q!
#define T_NIL 'e!
#define T EVAR 'f'
#define T SVAR 'g'
#define T_EXP 'h'
#define TICONST 'i'
#define T_ RCONST 'j'
#define T_LCONST 'k'
#define T_"VECTOR '1'
#define T_.COND 'm'
#define T TRUE 'n'
#define T_MERGE 'o'
#define T FUNC 'p!

struct trafonode
{ char kind;
struct trafo_node *next;
union{ struct{ struct trafonode xvar,xexl1,xex2,xex3,xbody;

192

} do_pattern;
struct{ struct trafonode xlhs,*rhs;
} assign_pattern;
struct{ struct trafonode xcond,*body;
} if_pattern;
struct{ struct trafonode xopl,*op2;
char expr_kind;
} exp;
struct{ int var_nr,vecvar;
struct trafo_node *v1,%v2,%v3;
} vec;
struct{ struct trafonode *11,x12;
} merge;
struct{ int entry,len;
struct trafo_node xargl,xarg2;
} func;
int var_nr;
int ival;
double rval;
struct{ int flags,sl1,sl2,on;
char kind;
} cond;
it
b

typedef struct trafo_node xtrafo_ptr;

trafo_ptr t_pop();

O LEX Definitions for the transformation language

7o{
[+ Source to Source Compiler
by Aart J.C. Bik
LEX-definitions for Trafo-Definition File x/

#include "y.tab.h"

extern int line,yylval tcharpt;
extern double rval;

o}

scan [\t]
skip {scan}+

193

nl [\n]

letter [a—7]

digit [0—9]

number {digit}{digit}?

inthum {digit}+

decpoint {digit}+\.{digit}=*

realnum {decpoint}(("E"|"e")("+"|"-")?{digit}+)?
identifier {letter}(({letter}|{digit})x)

%%

{skip} { /* Skip white space %/ }
#.x\n { line++; /« Skip comments %/ }
{nl} { line++; /x Skip return %/ }
"and" { return AND; }

"assign" { return ASSIGN; }
"condition" { return CONDITION; }
"do" { return DO; }

"doall" { return DOALL; }
"dobody" { return DOBODY; }
"end" { return END; }

"head" { return HEAD; }

"if" { return IF; }

"ifbody" { return IFBODY; }
"into" { return INTO; }

"list" { return LIST; }

"merge" { return MERGE; }
"next" { return NEXT; }

"nil" { return NIL; }

"nodep" { return NODEP; }
"transform" { return TRANSFORM; }
"true" { return TRUE; }

won { return '."'; }

"y { return ';"'; }

e { return ' ('; }

"y { return ")'; }

" { return ',"'; }

"< { return '<'; }

"> { return '>'; }

= { return '='; }

" { return '+'; }

- { return '-'; }

" { return '*'; }

"/ { return '/"'; }

194

Moy { return EXP7 }

".eq." { return EQ; }
".neq." { return NE; }
".ge." { return GE; }
"gt." { return GT; }
".le." { return LE; }
"1t { return LT; }
".eqv." { return EQV; }
".neqv." { return NEQV; }
".and." { return LAND; }
".or." { return OR; }
".not." { return NOT; }

"1e"{number} { sscanf(&yytext[2],"%d",&yylval); return EXPVAR; }
"1s"{number} { sscanf(&yytext[2],"%d",&yylval); return STMTVAR; }

"flow" { yylval = 1; return DEPKIND; }

"anti" { yylval = 2; return DEPKIND; }

"output" { yylval = 3; return DEPKIND; }

"input" { yylval = 4; return DEPKIND; }

".true." { yylval = 1; return BOOLCONST; }

".false." { yylval = 0; return BOOLCONST; }

"vectorize" { return VECTOR; }

{intnum} { sscanf(yytext,"%d" ,&yylval); return INTCONST; }
{realnum} { sscanf(yytext,"%1f" &rval); return REALCONST; }

{identifier} { register int i;
yylval = tcharpt;
if (yyleng > 6) yyleng = 6;
for (i = 0; i < yyleng; i++) char_insert(yytext[i]);
char_insert('\0"); return FUNC; }
{ return yytext[0]; /«x Parser generates the error */ }

%%

[+ Function needed by lex x/

yywrap() { return 1; }

P YACC Definitions for the transformation language

7o{

[+ Source to Source Compiler

195

by Aart J.C. Bik
YACC-definitions for Trafo-Definition File x/

#include <stdio.h>

#include "trafo.h"

#include "prgtype.h"

#define ~_RUNTIME_.YYMAXDEPTH / Runtime memory allocation in YACC
+/

double rval;
int posl,pos2,pos3;

/x External variables %/

extern int err,line,vectmode,tcharpt;
extern trafo_ptr inpattern;

[+ Attributes:

dirvec holds the number of directions

EXPVAR and STMTVAR hold the variable number

FUNC holds the character entry of the identifier

DEPKIND holds a representation for the kind of dependence

INTCONST BOOLCONST hold the representation of the constant value %/
o}

%token AND ASSIGN BOOLCONST CONDITION CURRENT DEPKIND
%token DIGIT DO DOALL DOBODY FUNC END EXPVAR HEAD IF

%token IFBODY INTCONST LIST INTO MERGE NEXT

%token NIL NODEP REALCONST STMTVAR TRANSFORM TRUE VECTOR
%token EXP EQ NE GE GT LE LT EQV NEQV LAND OR NOT UMIN

%mnonassoc EQV NEQV

%left OR

Yoleft LAND

Y%mnonassoc NOT

Y%mnonassoc EQ NE GE GT LE LT

Y%mnonassoc ' :'
%left LR R |
%left gt 1 /]

%right EXP
%right UMIN

Y%start trafos

%%

196

trafos : trafo trafos {;}
| END { printf("\n%i transformation",trafonum());
if (trafonum() == 1) printf("\n");
else printf("s\n"); }

trafo : TRANSFORM { var_init(); }
pattern { j TOP «/ inpattern = t_pop(); t_push(inpattern); }
INTO { def(); }
pattern
CONDITION conditions ';' { trafo_insert(); }

I

pattern : LIST ' (' stmt ', ' pattern ')' { tlink(); }
| STMTVAR { mark_stmtvar($1); set_stmtvar($1);
| MERGE ' (' pattern ',' pattern ') ' { set_merge(); }
| NIL { setmil(); }

I

stmt :DO '"("exp ',"exp ','exp ',' exp ', pattern ')’
{ set_do(TDO); }
| DOALL '(" exp ',"exp ','exp',' exp',' pattern ')’
{ set_do(T_DOA); }
| ASSIGN '(' exp ',' exp ')'
{ set_assign(); }
| IF ' (" exp ', ' pattern ')’

{ set.if(); }
exp : EXPVAR { mark_exprvar($1); set_exprvar($1); }
| exp '+' exp { set_exprkind(E_ADD); }
| exp '-' exp { set_exprkind(E_-MIN); }
| exp '*' exp { set_exprkind(E_-MUL); }
| exp '/' exp { set_exprkind(E_DIV); }
| exp EXP exp { set_exprkind(E_EXP); }
| exp EQ exp { set_exprkind(E_EQ); }
| exp NE exp { set_exprkind(E_NE); }
| exp GE exp { set_exprkind(E_GE); }
| exp GT exp { set_exprkind(E_GT);
| exp LE exp { set_exprkind(E_LE); }
| exp LT exp { set_exprkind(E_LT); }
| exp EQV exp { set_exprkind(E_EQV); }
| exp NEQV exp { set_exprkind(ENEQV); }
| exp LAND exp { set_exprkind(E_AND); }
| exp OR exp { set_exprkind(E_OR); }
| NOT exp { set_exprkind(E_NOT); }

197

| 1 (l exp l) 1
| "= exp %prec UMIN { set_exprkind(E_UMIN); }

| INTCONST { set_const($1,0);
| REALCONST { set_rconst(rval); }
| BOOLCONST { set_const($1,1); }

| { vectmode++; }
VECTOR ' (" EXPVAR '|' EXPVAR '," exp ':'exp ':' exp ')’
{ set_vector($4,%6); }
| FUNC '"("exp ', exp ")' { set_func($1,2); }
| FUNC '(' exp ") { set_func($1,1); }
| FUNC { set_func($1,0); }

I

conditions : condition AND conditions { t.link(); }
| condition {;}

I

condition : TRUE { set_true(); }
| NODEP DEPKIND
{ posl = tcharpt; } dirvec
{ pos2 = tcharpt; } ' (' sindic ',
{ pos3 = tcharpt; } s_indic ') ' onclause
{ testnest($4,pos2,pos3); set_cond(posl,pos2,pos3,$2,$12); }

I

onclause : ">" EXPVAR { $$ = $2; }
| {88 =-1;}

dirvec 7 : dir dirvec { $8 = $2 + 1; }
| { $$ = 0; char_insert('\0"); }

I

dir : '=' { char_insert('="); }
| "< { char.insert('<"); }
| "> { char.insert('>"); }
| "x' { char_insert('=*"'); }
sdindic : '$"' attribs { ; }
attribs : '.' NEXT { char_insert('n'); } attribs {; }
| '." DOBODY { charinsert('d"); } attribs { ; }
'.' IFBODY { charinsert('i'); } attribs { ; }

|
| '.* HEAD { charinsert('h'); char_insert('\0'); }
| { char_insert('\0'); }

198

%%
/¥ Reports an error message in case of a syntax error x/

yyerror(s) char xs;
{ printf("\n#*** %s in Transformation file: line <%d>\n\n",sline);
err = 1; [« sets the error flag */
while (yylook() > 0); /* lex - hack %/

}

Q Unparsing Routines

[+ Source to Source Compiler
by Aart J.C. Bik
Procedures for showing the program x/

#include <stdio.h>
#include "prgtype.h"

/* Administration variables %/

FILE xfilen;

int norm_on,show_on,nest,level ,column;
int loopname[NESTSIZE];

char string[80];

[+ This procedure writes the string to the output file
and cuts of at the 72th column using continuation %/

dump72(s) char xs;
{ register int i;

if ((column > 64) && (s[0] # '\n'))
{ fprintf(filen,"\n + "); column = 0; }
for (i = 0; i < strlen(s); i++)
{ fprintf(filen,"%c" s[i]);
if (s[li] == '\n') column = 0;
else column++;
}
}

[* These procedures show particular expressions x/

show_norm(nrm) int *nrm;

199

{ register int i;
int set=0;

dump72(" <");
for (i=0; i<nest; i++)
if (nrmli])
{ if ((set) && (nrml[i] > 0)) dump72("+");
/+ minus is printed automatically %/
sprintf(string,"%i*" nrmli]);
if (nrmli] # 1) dump72(string);
dump72(st_pos(loopnameli])); set=1; / Always a scalar */
}
if (nrm[nest])
{ if ((set) && (nrmnest] > 0)) dump72("+");
sprintf(string,"%i" ,nrm[nest]); dump72(string); set = 1;

}

if (set == 0) dump72("0");
dump72("> ");
}

show_var(e) expr_ptr e;
{ sub_ptr now;

dump72(st_pos(e — u.var.entry));
now = e — u.var.dim_list;
if (now # NULL)
{ dump72(" (");
while (now # NULL)
{ if ((norm_on) && (now — normexpr # NULL))
show_norm(now — normexpr);
else show_expr(now — head);
now = now — tail;
if (now # NULL) dump72(",");
}
dump72(")");
}
}

show_const(e) expr_ptr e;
{ switch (e — u.expr.type)
{ case INTTYPE: sprintf(string,"%i",e — u.expr.val.i);

dump72(string); break;

case REALTYPE: sprintf(string,"%1f",e — u.expr.val.f);
dump72(string); break;

case LOGICTYPE: if (e — u.expr.val.b) dump72(".TRUE.");

else dump72(" .FALSE."); break;

200

default: printf("**x Corrupt\n"); exit(1);

}
}

show_uoper(e) expr_ptr e;
{ switch (e — kind)
{ case E.UMIN: dump72(" (-"); break;
case EZNOT: dump72(".NOT. ("); break;
default: printf("**x Corrupt\n"); exit(1);
}

show_expr(e — u.operands.argl);
dump72(")");

}

show_oper(e) expr_ptr e;
{ dump72(" (");
show_expr(e — u.operands.argl);
switch (e — kind)

{ case EMUL: dump72(" * "); break;
case E_DIV: dump72(" / "); break;
case E_LEXP: dump72(" ** "); break;
case E_EQ: dump72(".EQ."); break;
case ENNE: dump72(".NE."); break;
case E_.GE: dump72(".GE."); break;
case E_.GT: dump72(".GT."); break;
case E_LE: dump72(".LE."); break;
case E_LT: dump72(".LT."); break;
case E_LEQV: dump72(".EQV."); break;
case EZNEQV: dump72(".NEQV."); break;
case E_LAND: dump72(".AND."); break;
case E_LOR: dump72(".0R."); break;
case E_LADD: dump72(" + "); break;
case E_MIN: dump72(" - "); break;
default: printf("**x Corrupt\n"); exit(1);
}

show_expr(e — u.operands.arg2);
dump72(")");
}

I
I

show _triplet(e) expr_ptr e;
{ show_expr(e — u.vec.el); dump72(":");
show_expr(e — u.vec.e2); dump72(":");
show_expr(e — u.vec.e3);

}

/¥ This procedure shows an expression */

201

show_expr(e) expr_ptr e;
{ if (¢ == NULL) dump72("<Empty>");
else switch (e — kind)

{ case E.VAR: show_var(e); break;
case E_CONST: show_const(e); break;
case E_UMIN: show_uoper(e); break;
case E_ZNOT: show_uoper(e); break;
case E_ZVEC: show_triplet(e); break;
default: show_oper(e); break;

}
}

/+ This procedure handles the indentation %/

level it()
{ register int i;
int max;

max = level;
if (max > 20) max = 20;
for (i=1; i<max; i++) dump72(" ");

}

/¥ These procedures show one particular statement %/

show_body(s) stmt_ptr s;
{ show_expr(s — u.doloop.index);

dump72(" = "); show_expr(s — u.do_loop.exprl);
dump72(", "); show_expr(s — u.do_loop.expr2);
dump72(", "); show_expr(s — u.do_loop.expr3);
loopname|[nest++] = (s — u.do_loop.index) — u.var.entry;
dump72("\n"); level += 2; show_stmtlist(s — u.do_loop.body); level —= 2;
nest——; level_it();

}

show_doloop(s) stmt_ptr s;
{ level_it(); if (show_on) fprintf(filen,"L%i: ",s — u.doloop.loopno);
switch (s — u.doloop.ext)
{ case NORM : dump72("D0 "); show_body(s);
dump72("ENDDO\n"); break;
case ALL : dump72("DOALL "); show_body(s);
dump72("ENDDOALL\n"); break;
default : printf("*** Corrupt\n"); exit(1);

}

202

show_assign(s) stmt_ptr s;
{ level_it(); if (show_on) fprintf(filen,"S%i: ",s — u.assign.stmtno);
show_expr(s — u.assign.lhs); dump72(" = ");
show_expr(s — u.assign.rhs); dump72("\n");

}

show _logicalif(s) stmt_ptr s;
{ int oldlevel,

level_it(); if (show_on) fprintf(filen,"C%i: ",s — u.s_if.condno);
dump72("IF (");

show_expr(s — u.s.f.condition);

dump72(") ");

oldlevel = level; level = 0;

show_stmt(s — u.s_if.body); level = oldlevel;

}

show_genif(s) stmt_ptr s;

{ level_it(); if (show_on) fprintf(filen,"C%i: ",s — u.s_if.condno);
dump72("IF ("); show_expr(s — u.s_if.condition); dump72(") THEN\n");
level += 2; show_stmtlist(s — u.s_if.body); level —= 2;
levelit(); dump72("END IF\n");

}

show _elseif(s) stmt_ptr s;
{ level —=2; level.it(); level += 2;
if (show_on) { sprintf(string,"C%i: ",s — u.s_if.condno); dump72(string); }
dump72("ELSE IF ("); show_expr(s — u.s_if.condition); dump72(") THEN\n");

}

show_while(s) stmt_ptr s;
{ level.it();
if (show_on) { sprintf(string,"C%i: ",s — u.s_if.condno); dump72(string); }
dump72("D0 WHILE ("); show_expr(s — u.s-if.condition); dump72(")\n");
level += 2; show_stmtlist(s — u.s_if.body); level —= 2;
level.it(); dump72("ENDDO\n");

}

show _else()
{ level —=2; level.it(); level += 2; dump72("ELSE\n"); }

show _stop()
{ level.it(); dump72("STOP\n"); }

Jx This procedure shows one particular statement %/

203

show_stmt(s) stmt_ptr s;
{ switch (s — kind)
{ case K_DO: show_doloop(s); break;
case K_ASSIGN: show_assign(s); break;

case K_LOGICIF: show_logicalif(s); break;
case K.GENIF: show_genif(s); break;
case K_LELSEIF: show_elseif(s); break;
case K_ELSE: show_else(); break;
case K.WHILE: show_while(s); break;
case K_.STOP: show_stop(); break;
default: printf("*** Corrupt\n"); exit(1);

}
}

/+ This procedure sends the statementlist pointed to by s
in a readable fashion to the appropriate filen s/

show_stmtlist(s) stmt_ptr s;
{if ((s £ NULL) && (s — kind # K_LINKUP) && (s — kind # K_LINKIFUP))
{ show_stmt(s); show_stmtlist(s — next); }

}

/* Shows a subscriptlist */

show_subscriptlist(dp) dim_ptr dp;
{ dump72(" (");
while (dp # NULL)
{ sprintf(string,"%i:%i",dp — low,dp — high);
dump72(string);
dp = dp — next;
if (dp # NULL) dump72(",");
}
dump72(")");
}

/x Writes the symboltable into a readable form */

dump_symbols()
{ register int i;

for (i = 0; i < stonumber(); i++)
if ((streturndim(i) > 0) && (st_returntype(i) # UNDEF))
{ switch(st_returntype(i))
{ case INTTYPE: dump72(" INTEGER "); break;
case REALTYPE: dump72(" REAL "); break;

204

case LOGICTYPE: dump72(" LOGICAL "); break;

dump72(st_pos(i));
if (streturndim(i) > 0)
show _subscriptlist(st_returndimlist(i));
dump72("\n");
}
dump72("\n");
}

/* Sends the program in memory to the filen program.out
show_on controls the numbering of statements
norm_on controls the presentation of the normal forms %/

dump_program(on,s) int on; char xs;
{ norm_on = show_on = on;
filen = fopen(s,"w");
if (filen == NULL)
printf("\n*** Error: can't open %s\n",s);
else { column = 0;
dump72(" PROGRAM "); dump72(st_pos(0)); dump72("\n");
dump_symbols(); nest = 0; level = 6;
show_stmtlist(give_program());
dump72("\n END\n");
fclose(filen);
}
}

/¥ Opens the standard output for displaying code x/

open_program()
{ show_on = 1; filen = stdout;
norm_on = column = nest = 0; level = 6; }

R Transformation Storage Routines

[+ Source to Source Compiler
by Aart J.C. Bik
Transformation storage procedures */

#include <stdio.h>
#include "trafo.h"
#include "prgtype.h"

/* Administration Variables %/

205

int vectmode,line,err,setting;
int s_used[100],e_used[100];
trafo_ptr inpattern;

char em[80];

extern FILE xyyin;
extern char xcharco;

/x Error routine %/

set_error(s) char xs;
{ printf("- Error: %s (line %d)\n",s,line);
err = 1; /x Set the error flag /

}

[+ Variable processing procedures x/

var_init()
{ register int i;

setting = 1; /x Set the ’setting-mode’ flag */
for (i = 0; i < 100; i++)

s_used[i] = e_used[i] = 0;
}

def() { setting = 0; }

[+ Checks that only lhs variables appear at the rhs and that
stmt-var-s are only matched once s/

mark_stmtvar(i) int i;
{ if (setting)
{ s_used[i]++;
if (s_used[i] == 2)
{ sprintf(em,"Variable s%i is used more than once",i);
set_error(em); }
}
else if (s_used[i] == 0)
{ sprintf(em,"Variable s%i is not defined before use",i);
set_error(em); }

}

mark_exprvar(i) int i
{ if (setting)
e_used[i] = 1;
else if (e_used[i] == 0)

206

{ sprintf(em,"Variable e%i is not defined before use",i);
set_error(em); }

}

[+ Tests the nesting of a condition x/

test_nest(nod,n1,n2) int nod,n1,n2;
{ int count=0;

while ((charco[nl] == charco[n2]) && (charco[nl] # '\0"))
{ if (charco[nl] == 'd"') count++;

nl++4; n24+;
}

if (nod # count)
set_error("Incorrect number of directions");

}

/x Determines if the structure in a condition is in conflict
with the in pattern of a transformation %/

int cond_conflict(i,t) int i; trafo_ptr t;
{if ((¢t == NULL) || (t — kind == T_NIL))
return (charcoli] # '\0");
else switch(charcoli])
{ case '\0' : return 0;
case 'd' :return (((t — kind # T_DO) && (t — kind # T_DOA))
|| (cond_conflict(i+1,t — u.do_pattern.body)));
case 'i' :return ((t — kind # TIF) ||
(cond_conflict(i+1,t — w.if_pattern.body)));
case 'n' : return cond_conflict(i+1,t — next);
case 'h' :return O;
default : printf("*** Corrupt\n"); exit(1);
}
}

/x Links to trafo nodes in sequence %/

t link()
{ trafo_ptr t1,t2;

t2 = t_pop(); t1 = t-pop();

if (t1 == NULL)
{ printf("Cannot link"); exit(1); }
else t1 — next = t2;

t_push(t1);

}

207

/x Procedures to create nodes for particular transformations x/

set_true()
{ trafo_ptr newtrafo;

newtrafo = (trafo_ptr) alloc_mem(sizeof(struct trafonode));
newtrafo — kind = T_TRUE;

newtrafo — next = NULL;

t_push(newtrafo);

}

set_cond(pl,p2,p3,depkind,onvar) int pl,p2,p3,depkind,onvar;
{ trafo_ptr newtrafo;

newtrafo = (trafo_ptr) alloc_mem(sizeof(struct trafonode));
newtrafo — kind = T_COND;
newtrafo — next = NULL;
newtrafo — u.cond.flags = pl;
newtrafo — u.cond.sll = p2;
newtrafo — u.cond.sl2 = p3;
newtrafo — u.cond.on = onvar;
switch(depkind)
{ case 1: newtrafo — u.cond.kind = FLOW; break;
case 2: newtrafo — u.cond.kind = ANTI; break;
case 3: newtrafo — u.cond.kind = OUTPUT; break;
case 4: newtrafo — u.cond.kind = INPUT; break;
default: printf("*** Corrupt\n"); exit(1);
}
[+ Test structures of both conditions %/
if (cond_conflict(p2,inpattern))
set_error("First structure in condition does not match pattern");
if (cond_conflict(p3,inpattern))
set_error("Second structure in condition does not match pattern");
t_push(newtrafo);

}

set_do(kd) char kd;
{ trafo_ptr newtrafo;

newtrafo = (trafo_ptr) alloc_mem(sizeof(struct trafonode));
newtrafo — kind = kd;

newtrafo — next = NULL;

newtrafo — u.do_pattern.body = t_pop();

newtrafo — u.do_pattern.ex3 = t_pop();

newtrafo — u.do_pattern.ex2 = t_pop();

208

newtrafo — u.do_pattern.exl = t_pop();
newtrafo — u.do_pattern.var = t_pop();
t_push(newtrafo);

}

set_if()
{ trafo_ptr newtrafo;

newtrafo = (trafo_ptr) alloc_mem(sizeof(struct trafonode));
newtrafo — kind = T_IF;

newtrafo — next = NULL;

newtrafo — w.if_pattern.body = t_pop();

newtrafo — u.if_pattern.cond = t_pop();

t_push(newtrafo);

}

set_assign()
{ trafo_ptr newtrafo;

newtrafo = (trafo_ptr) alloc_mem(sizeof(struct trafonode));
newtrafo — kind = T_ASSIGN;

newtrafo — next = NULL;

newtrafo — u.assign_pattern.rhs = t_pop();

newtrafo — u.assign_pattern.lhs = t_pop();
t_push(newtrafo);

}

set_vector(vnr,lpv) int var,lpv;
{ trafo_ptr newtrafo;

if (setting)
set_error("Vectorize cannot be used at left hand side");
if ((——vectmode) > 0)
set_error("Vectorize cannot be used inside another vectorize");
newtrafo = (trafo_ptr) alloc_mem(sizeof(struct trafonode));
newtrafo — kind = T_VECTOR;
newtrafo — next = NULL;
newtrafo — u.vec.vecvar = Ipv;
newtrafo — u.vec.varnr = vnr;
newtrafo — u.vec.v3 = t_pop();
newtrafo — u.vec.v2 = t_pop();
newtrafo — u.vec.vl = t_pop();
t_push(newtrafo);

}

set_merge()

209

{ trafo_ptr newtrafo;

}

if (setting)
set_error("Merge cannot be used at left hand side");
newtrafo = (trafo_ptr) alloc_mem(sizeof(struct trafonode));
newtrafo — kind = T_MERGE;
newtrafo — next = NULL;
newtrafo — u.merge.l12 = t_pop();
newtrafo — u.merge.ll = t_pop();
t_push(newtrafo);

set_func(entry,arg) int entry,arg;
{ trafo_ptr newtrafo;

}

if (setting)
{ if (arg == 0)
set_error("Scalar variable cannot be used at left hand side");
else set_error("Intrinsic function cannot be used at left hand side");
}
newtrafo = (trafo_ptr) alloc_mem(sizeof(struct trafonode));
newtrafo — kind = T_FUNC;
newtrafo — next = NULL;
newtrafo — u.func.entry = entry;
newtrafo — u.func.len = (strlen(&charcolentry]));
if (arg == 2)
newtrafo — u.func.arg2 = t_pop();
else newtrafo — u.func.arg2 = NULL;
if (arg == 0)
newtrafo — u.func.argl = NULL;
else newtrafo — u.func.argl = t_pop();
t_push(newtrafo);

set_exprvar(vnr) int vnr;

{

}

trafo_ptr newtrafo;

newtrafo = (trafo_ptr) alloc_mem(sizeof(struct trafonode));
newtrafo — kind = T_EVAR,;

newtrafo — next = NULL;

newtrafo — u.var_nr = vur;

t_push(newtrafo);

set_const(i,logic) int i,logic;

{

trafo_ptr newtrafo;

210

newtrafo = (trafo_ptr) alloc_mem(sizeof(struct trafonode));
if (logic) newtrafo — kind = T_LCONST;
else newtrafo — kind = T_ICONST;
newtrafo — next = NULL;
newtrafo — u.ival = i;
t_push(newtrafo);

}

set_rconst(f) double f;
{ trafo_ptr newtrafo;

newtrafo = (trafo_ptr) alloc_mem(sizeof(struct trafonode));
newtrafo — kind = T_RCONST};

newtrafo — next = NULL;

newtrafo — u.rval = f;

t_push(newtrafo);

}

set_exprkind(ek) char ek;
{ trafo_ptr newtrafo;

newtrafo = (trafo_ptr) alloc_mem(sizeof(struct trafonode));
newtrafo — kind = T_EXP;
newtrafo — next = NULL;
newtrafo — u.exp.expr_kind = ek;
if ((ek == E_UMIN) || (ek == E_NOT))
newtrafo — u.exp.op2 = NULL;
else newtrafo — u.exp.op2 = t_pop();
newtrafo — u.exp.opl = t_pop();
t_push(newtrafo);

}

set_stmtvar(vnr) int vnr;
{ trafo_ptr newtrafo;

newtrafo = (trafo_ptr) alloc_mem(sizeof(struct trafonode));
newtrafo — kind = T_SVAR;

newtrafo — next = NULL;

newtrafo — u.var_nr = vur;

t_push(newtrafo);

}

set_nil()
{ trafo_ptr newtrafo;

211

newtrafo = (trafo_ptr) alloc_mem(sizeof(struct trafonode));
newtrafo — kind = T_NIL;

newtrafo — next = NULL;

t_push(newtrafo);

}

[+ Initializes the parser %/

parserinit()
{ trafo_garbage_collect(); tstack_init(); trafo_init();

}

[+ Calls the parser if the filename exists */

parser(name) char s*name;
{ line = 1; vectmode = err = 0; parserinit();

yyin = fopen(name,"r");

if (yyin == NULL)
printf("\n*** Bad filename: %s\n",name);
else { yyparse(); fclose(yyin);

if (err) parserinit(); }
return err;

}

S Transformation Application Routines

[Source to Source Compiler
by Aart J.C. Bik
Procedures for storing and applying transformations %/

#include <stdio.h>
#include "prgtype.h"
#include "trafo.h"

#define TRAFOSIZE 50
#define CHARSIZE 150

#define BODY 'a'

#define DOBODY 'b'

#define IFBODY 'c'

/+ Administration Variables %/

stmt_ptr s_v[100],previous,currentstmt,endmarker,restofprg;

trafo_ptr strafoin,*trafoout,xtrafocond; / [TRAFOSIZE] %/
int change,tcharpt,trafpt=0,e_def[100];

212

int search=0,vector=0,compstride,vecvar,exception;
expr_ptr e_v[100],vecl,vec2,vec3;
char Inorm,*charco; j [CHARSIZE] x/

/x External Variables %/

extern int fsympt,f_storept,assignno,loopnr,condno;
extern char command(];

[+ This procedure allocates dynamic memory for the transformations x/

trafo_memory()

{ trafoin = (trafo_ptr *) alloc.mem(TRAFOSIZE x sizeof(trafo_ptr));
trafoout = (trafo_ptr *) alloc.mem(TRAFOSIZE x sizeof(trafo_ptr));
trafocond = (trafo_ptr %) alloc.mem(TRAFOSIZE x sizeof(trafo_ptr));
charco = (char) alloccmem(CHARSIZE « sizeof(char));

}

[+ Resets the number of transformation stored x/

trafo_init()
{ tcharpt = trafpt = 0; }

/¥ Returns the number of transformations stored x/

int trafo_num()
{ return trafpt; }

[« Stores a character %/

char_insert(c) char c;
{ static int CHARCUR = CHARSIZE;

if (tcharpt > CHARCUR)
{ CHARCUR += 300;
charco = (char %) new_mem/(charco, CHARCUR x sizeof(char));

}

charco[tcharpt++] = c;

}

/x Stores an in and out pattern x/

trafo_insert()
{ static int TRAFCUR = TRAFOSIZE;

if (trafpt > TRAFCUR)

213

{ TRAFCUR += 100;
trafoin = (trafo_ptr %) new_mem/(trafoin, TRAFCUR = sizeof(trafo_ptr));
trafoout = (trafo_ptr *) new_mem(trafoout, TRAFCUR x sizeof(trafo_ptr));
trafocond = (trafo_ptr *) new_mem/(trafocond, TRAFCUR = sizeof(trafo_ptr));
}
trafocond|trafpt] = t_pop();
trafoout[trafpt] = t_pop();
trafoin[trafpt++] = t_pop();

}

[+ Tests if two subscript-lists are equal x/

int dimlist_equal(d1,d2) sub_ptr d1,d2;
{ int bool=1;

while ((bool) && (d1 # NULL))
{ if (d2 == NULL) bool = 0;
else if (expr_equal(dl — head,d2 — head))
{dl =dl — tail; d2 = d2 — tail; }
else bool = 0;

}
return ((bool) && (d2 == NULL));

}

[+ Tests if two expressions are equal */

int expr_equal(el,e2) expr_ptr el e2;
{ if (el == NULL) return (e2 == NULL);
else if (2 == NULL) return (el == NULL);
else switch(el — kind)

{ case E.VAR :
return ((E_ZVAR == €2 — kind) &&
(el — u.var.entry == e2 — u.var.entry) &&

(dimlist_equal(el — u.var.dim list,
e2 — u.var.dimlist)));
case E_CONST:
if ((ECCONST == ¢2 — kind) &&
(el — u.expr.type == €2 — u.expr.type))
switch(el — u.expr.type)
{ case INTTYPE:

return (el — u.expr.val.i == €2 — u.expr.val.i);
case REALTYPE:
return (el — uw.expr.val.f == €2 — u.expr.val.f);
case LOGICTYPE:
return ((el — w.expr.val.b == 0) ==
(€2 — u.expr.val.b == 0));

214

default:
printf("*** Corrupt\n"); exit(1);
}
else return 0;
case E_UMIN:
return ((E_UMIN == e2 — kind) &&
(expr_equal(el — u.operands.argl,
e2 — u.operands.argl))) ;
case E_NOT:
return ((EINOT == e2 — kind) &&
(expr_equal(el — u.operands.argl,
e2 — u.operands.argl))) ;
default:
return ((el — kind == e2 — kind) &&
(expr_equal(el — u.operands.argl,
e2 — u.operands.argl)) &&
(expr_equal(el — u.operands.arg2,
e2 — u.operands.arg2))) ;

}

/+ The following procedures set variable values if no binding
has been set and checks is the same binding is used otherwise */

int match_exprvar(e,i) expr_ptr e; int i;
{ if (e_def]i])
return (expr_equal(e,e_vl[i]));
else { ev[i] = e; e_defi] = 1; return 1; }

}

match_stmtvar(s,i) stmt_ptr s; int i;
{ swli] =s; /* s_v is only set once %/ }

/x This procedure determines if a match with an expression exists */

int match_expr(pl,p2) expr_ptr pl; trafo_ptr p2;
{ if (p2 — kind == T_EVAR) return match_exprvar(pl,p2 — u.var_nr);
else if (p1 == NULL) return 0;
else if (p2 — kind == T_ICONST)
return ((pl — kind == E_CONST) && (pl — u.expr.type == INTTYPE)
&&
(pl — u.expr.val.i == p2 — u.ival));
else if (p2 — kind == T_RCONST)
return ((pl — kind == E_CONST) && (pl — u.expr.type == REALTYPE)
&&

(pl — uw.expr.val.i == p2 — w.rval));

215

else if (p2 — kind == T_LCONST)
return ((pl — kind == E_CONST) && (pl — u.expr.type == LOGICTYPE)
&& ((pl — wexpr.vali==0) ==
(p2 — wival == 0)));
else switch(p2 — u.exp.expr_kind)
{ case E_UMIN:
return ((pl — kind == E_UMIN) &&
(match_expr(pl — u.operands.argl,p2 — u.exp.opl)));
case E_ZNOT:
return ((pl — kind == E.NOT) &&
(match_expr(pl — u.operands.argl,p2 — u.exp.opl)));
default:
return ((pl — kind == p2 — u.exp.expr_kind) &&
(match_expr(pl — u.operands.argl,p2 — u.exp.opl)) &&
(match_expr(pl — u.operands.arg2,p2 — u.exp.op2)));

}
}

Jx This procedure determines if a match with a kind of do-loop exists */

int match_do(p1,p2,kind) stmt_ptr pl; trafo_ptr p2; char kind;
{if ((p1 # NULL) && (pl — kind == K_DO) &&
(pl — u.do_loop.ext == kind) &&
(match_expr(pl — u.doloop.index,p2 — u.do_pattern.var)) &&
(match_expr(pl — u.dodoop.exprl,p2 — u.do_pattern.exl)) &&
(match_expr(pl — u.doJdoop.expr2,p2 — u.do_pattern.ex2)) &&
(match_expr(pl — u.doloop.expr3,p2 — u.do_pattern.ex3)) &&
(t-match(pl — u.do_loop.body,p2 — u.do_pattern.body)))
return 1;

else return 0;

}

/x This procedure determines if a match with an assignment exists %/

int match_assign(pl,p2) stmt_ptr pl; trafo_ptr p2;

{if ((p1 # NULL) && (pl — kind == K_ASSIGN) &&
(match_expr(pl — u.assign.lhs,p2 — u.assign_pattern.lhs)) &&
(match_expr(pl — u.assign.rhs,p2 — u.assign_pattern.rhs)))

return 1;
else return 0;

}

[+ This procedure determines if a match with a logical /general if exists */

int match_if(p1l,p2) stmt_ptr pl; trafo_ptr p2;
{if ((pl # NULL) &&

216

((p1 — kind == K_GENIF) || (pl — kind == K_LOGICIF)) &&
(match_expr(pl — u.s_if.condition,p2 — w.if_pattern.cond)) &&
(t-match(pl — u.s_if.body,p2 — u.if_pattern.body)))

return 1;

else return 0;

}

/* This procedure determines if a patterns matches with a fragment
from the source program x/

int t_match(pl,p2) stmt_ptr pl; trafo_ptr p2;
{ static int active = 0; int busy = 1;

active++;
while ((p2 # NULL) && (busy))
{ switch(p2 — kind)
{ case T.DO: busy = match_do(pl,p2,NORM);
if (busy) pl = pl — next; break;
case T DOA: busy = match_do(pl,p2,ALL);
if (busy) pl = pl — next; break;
case T_ASSIGN: busy = match_assign(pl,p2);
if (busy) pl = pl — next; break;
case T_IF: busy = match_if(pl,p2);
if (busy) pl = pl — next; break;
case T_.SVAR: if (active == 1)
{ endmarker = pl;
if ((pl == NULL) || (p1 — kind == K_LINKUP)
| (p1 — kind == K_LINKIFUP))
restofprg = NULL;
else restofprg = pl;
match_stmtvar(restofprg,p2 — u.var_nr);
} else match_stmtvar(pl,p2 — u.var_nr);
break;
case T_NIL: busy = (int)
((pl == NULL) || (pl — kind == K_LINKUP)
I| (p — kind == K_LINKIFUP));
if ((busy) && (active == 1))
{ endmarker = pl; restofprg = NULL; }
break;
default: printf("*** Corrupt\n"); exit(1);
}
p2 = p2 — next;
} active——; return busy;

}

/¥ Determines binding of condition structure %/

217

stmt_ptr cond_slist(s,i,hd) stmt_ptr s; int i, xhd;
{ while (charco[i] # '\0")
switch (charco[i++])

{ case 'n' : s =s — next; break;
case 'd' : s =s — u.do_loop.body; break;
case 'i' : s = s — u.s_if.body; break;

case 'h' : (xhd) = 1; break;

default : printf("Corrupt\n"); exit(1);

}

return s;

}

/x Determines if all the conditions hold /

int t_cond(s,cond) stmt_ptr s; trafo_ptr cond;
{ stmt_ptr s1,s2; int h1=0,h2=0;

if (cond == NULL)
return 1;
else switch(cond — kind)
{ case T_-TRUE : return t_cond(s,cond — next);
case T_COND :
sl = cond_slist(s,cond — u.cond.sll,&h1);
s2 = cond_slist(s,cond — u.cond.sl2,&h2);
return
((nodep(sl,s2,h1,h2,cond — u.cond.flags,
cond — u.cond.on,cond — u.cond.kind)) &&
(t_cond(s,cond — next)));
default : printf("*** Corrupt\n"); exit(1);

}
}

[+ This procedure shows the matching bock x/

show_matchingblock(s) stmt_ptr s;
{ printf("** MATCH ON\n");
while (s # endmarker)
{ show_stmt(s); s = s — next; / 1 level %/ }
if ((s # NULL) && (s — kind # K_LINKIFUP) && (s — kind # K_LINKUP))
printf(" \n");
}

/x Determines the stride of a vector instruction
if the stride cannot be determined it is set to 0 */

218

int det_stride(e) expr_ptr e;
{ int al,a2;

if (e # NULL)
switch(e — kind)
{ case E_VAR: if (vecvar == e — u.var.entry)
{ copyexpr(vec3); return 1; }
else { copyexpr(e); return 0; }
case E_.CONST: make_const(e — u.expr.type,e — u.expr.val);
return 0;
case ELMUL: al = det_stride(e — u.operands.argl);
a2 = det_stride(e — u.operands.arg?);
if ((al + a2) == 2) compstride = 1;
make_expr(E_MUL,INTTYPE);
return (al 4+ a2 > 0);
case E_LADD: al = det_stride(e — u.operands.argl);
a2 = det_stride(e — u.operands.arg?);
if (((al + a2) ==2) || (al + a2 == 0))
make_expr(E_ADD,INTTYPE);
else if (al) del_expr(e_pop());
else { expr_ptr save;
save = e_pop(); del_expr(e_pop());
e_push(save); }
return ((al + a2) > 0);
case E_MIN: al = det_stride(e — u.operands.argl);
a2 = det_stride(e — u.operands.arg?);
if (((al + 22) == 2) || ((al + 22) == 0))
make_expr(E_MIN,INTTYPE);
else if (al) del_expr(e_pop());
else { expr_ptr save;
save = e_pop(); del_expr(e_pop());
e_push(save); make_expr(E_UMIN,INTTYPE); }
return ((al + a2) > 0);
case E_ZUMIN: al = det_stride(e — u.operands.argl);
make_expr(E_UMIN,INTTYPE);
return al;
default: compstride = 1; e_push(NULL); return 0;

}
else { e_.push(NULL); return 0; }

}

/x Set vectorizing information %/
canvec(t) trafo_ptr t;

{ if ((e_v[t — u.vec.vecvar] # NULL) &&
(ev[t — u.vec.vecvar] — kind == E_VAR) &&

219

(streturndim(e_v[t — u.vec.vecvar| — u.var.entry) == 0))
{ vecvar = e_v[t — u.vec.vecvar] — u.var.entry;
make_newexpr(t — u.vec.vl); vecl = e_pop();
make_newexpr(t — u.vec.v2); vec2 = e_pop();
make_newexpr(t — u.vec.v3); vec3 = e_pop(); vector = 1; }
else { printf("=> Vector variable is a non scalar\n"); exception = 1; }
copyexpr(e_v[t — u.vec.var_nr]); vector = 0;

}

/¥ Determines if a vector variable is present in an expression x/

int present(e) expr_ptr e;
{ if (e # NULL)
switch(e — kind)
{ case E.VAR: return (e — u.var.entry == vecvar);
case E_CONST: return 0;
case E_VEC:
if ((present(e — u.vec.el)) || (present(e — u.vec.e2)) ||
(present(e — u.vec.e3)))
{ exception = 1;
printf("=> Vector variable occurs in other vector\n"); }
return 0;
default: return ((present(e — u.operands.argl)) ||
(present(e — u.operands.arg2)));
}

else return 0;

}

/+ Copies an expression, vectorizes it if required
and determines the new normal form %/

copyexpr(e) expr_ptr e;
{ sub_ptr subpt; int sub=0;

if (e == NULL) e_push(NULL);
else switch(e — kind)
{ case E_VAR:
subpt = e — u.var.dim_list;
while (subpt # NULL)
{ if ((vector) && (search == 0) && (present(subpt — head)))
{ /x Vectorize mode %/
if (sub == 1)
{ printf("=> Vector variable occurs more than once\n");
exception = 1; }
search = 1; copyexpr(subpt — head);
search = 2; copyexpr(subpt — head);

220

search = compstride = 0; det_stride(subpt — head);
if (compstride)
{ union valuerec val;

printf("=> Stride cannot be determined\n");
exception = 1; del_expr(e_pop());
val.i = 0; make_const(INTTYPE,val);

}

make_vector(); sub++;
}
else copyexpr(subpt — head);
subpt = subpt — tail;
}
if ((search > 0) && (e — u.var.entry == vecvar))
if (search == 1)
{ search = vector = 0; copyexpr(vecl); search = vector = 1; }
else { search = vector = 0; copyexpr(vec2);
search = 2; vector = 1; }
else make var(e — u.var.entry,st returndim(e — u.var.entry));
break;
case E_CONST: make_const(e — u.expr.type,e — u.expr.val); break;
case E_ZVEC: copyexpr(e — u.vec.el); copyexpr(e — u.vec.e2);
copyexpr(e — u.vec.e3); make_vector(); break;
default: copyexpr(e — u.operands.argl);
if ((e — kind # E_UMIN) && (e — kind # E_NOT))
copyexpr(e — u.operands.arg2);
if (search)
make_expr(e — kind, INTTYPE);
else make_expr(e — kind,0);
break;

¥
¥

/x Creates an expression %/

make_newexpr(t) trafo_ptr t;
{ union valuerec val;

if (t == NULL) e_push(NULL);
else switch(t — kind)
{ case T_EVAR:
copyexpr(e_v[t — u.var_nr]); break;
case T_-VECTOR:
canvec(t); break;
case T_ICONST:
val.i = t — u.ival; make_const(INTTYPE,val); break;

221

case T_.RCONST:

val.f = t — u.rval; make_const(REALTYPE,val); break;

case T_LCONST:

val.b = t — u.ival; make_const(LOGICTYPE,val); break;

case T_FUNC:
{ int i,arg=0;

i = st_insertid(t — u.func.len,&charco[t — u.func.entry]);

if (t — u.func.argl # NULL)

{ arg++; make newexpr(t — u.func.argl); }
if (t — u.func.arg2 # NULL)
{ arg++; make newexpr(t — u.func.arg2); }
if ((streturntype(i) # UNDEF) && (streturndim(i) # arg))
{ printf("=> Unconsistent use of variable\n"); exception = 1; }
else { st_givedim(i,arg); st_givetype(i,dettype(i)); }
make_var(i,arg);
break;

}

default:
make_newexpr(t — u.exp.opl);
if ((t — u.exp.expr_kind # E_UMIN) &&

(t — u.exp.expr_kind # E.NOT))

make_newexpr(t — u.exp.op2);
make_expr(t — u.exp.expr_kind,0);

break;

}
}

/+ These procedures copy certain kind of statemens %/

copy_do(s) stmt_ptr s;

{ copyexpr(s — u.do_loop.index);
copyexpr(s — u.do_loop.exprl);
copyexpr(s — u.do_loop.expr2);
copyexpr(s — u.do_loop.expr3);
stack(0,s — u.do_loop.index — u.var.entry); j environment x/
make_newstmt(s — u.do_loop.body);
unstack(0); /4 environment */
make_loop(0,+-+loopnr,s — u.do_loop.ext);

}

copy_assign(s) stmt_ptr s;
{ copyexpr(s — u.assign.lhs);
copyexpr(s — u.assign.rhs);
make_assign(++assignno);

}

222

copy-if(k,s) char k; stmt_ptr s;
{ if (k # K_ELSE) copyexpr(s — u.s_if.condition);
make newstmt(s — u.s_if.body);
switch(k)

{ case KZWHILE : make_while(++condno); break; /« WHILE x/
case K_.GENIF : make_generalif(4++condno); break;
case K_LOGICIF: make_logicalif(+-+condno); break;
case K_ELSEIF : make_else(1,4++condno); break;
case K_ELSE : make_else(0,0); break;
default : printf("*** Corrupt\n"); exit(1);

}

}

[+ Creates a new statement list by copying %/

make_newstmt(s) stmt_ptr s;
{ stmt_ptr head=NULL,0ld=NULL;

while (s # NULL)

{ switch(s — kind)

{ case K_DO: copy_do(s); s = s — next; break;
case K_LASSIGN: copy.assign(s); s = s — next; break;
case K_LOGICIF: copy-if(K_LOGICIF,s); s = s — next; break;
case K_.GENIF: copy.if(K_.GENIF,s); s = s — next; break;
case K. ELSE: copy.f(K_ELSE,s); s = s — next; break;
case K_ELSEIF: copy-f(K_ELSEIF,s); s = s — next; break;

[+ WHILE %/ case K. WHILE: copy-if(K_-WHILE,s); s = s — next; break;

case K.STOP: makestop(); s = s — next; break;
case K_LINKUP: s_push(NULL); s = NULL; break;
case K_LINKIFUP: s_push(NULL); s = NULL; break;
default: printf("*** Corrupt\n"); exit(1);

}

if (head == NULL) old = head = s_pop();
else old = old — next = s_pop();

}
s_push(head);

}

[+ Creates a new DO-loop %/

make_gendo(t,ext) trafo_ptr t; char ext;
{ expr_ptr control;

make_newexpr(t — u.do_pattern.var);

control = e_pop(); e_push(control); 4 TOP computation /
make_newexpr(t — u.do_pattern.exl);

223

make_newexpr(t — u.do_pattern.ex2);
make_newexpr(t — u.do_pattern.ex3);
[* Check if only scalars are used */
if ((control # NULL) && (control — kind == E_VAR)
&& (streturndim(control — u.var.entry) == 0))
stack(0,control — u.var.entry); /4 environment %/
else { printf("=> Introducing non scalar as loop-control variable\n");
stack(0,0); exception = 1; }
comp_newblock(t — u.do_pattern.body);
if (exception == 0) unstack(0); /« environment */
make_loop(0,(-+-+loopnr),ext);

}

/+ Computes the resulting fragment x/

comp_newblock(t) trafo_ptr t;
{ stmt_ptr head=NULL,0ld=NULL;
static int lv;

Iv++;
while (t # NULL)
{ switch(t — kind)
{ case T. DO : make_gendo(t,NORM); break;
case T DOA : make gendo(t,ALL); break;
case T_ASSIGN: make newexpr(t — u.assign_pattern.lhs);
make_newexpr(t — u.assign_pattern.rhs);
make_assign(++assignno); break;
case TIF : make newexpr(t — u.if_pattern.cond);
comp_newblock(t — u.if_pattern.body);
/x Note: always a general IF %/
make_generalif(+-+condno); break;
case T_MERGE : comp_newblock(t — u.merge.l1);
lv——; comp_newblock(t — u.merge.12); lv++;
{ stmt_ptr s1,s2,scan,prev=NULL;
s2 = s_pop(); scan = s1 = s_pop();
while (scan # NULL)
{ prev = scan; scan = scan — next; }

if (prev == NULL)

s_push(s2);
else { prev — next = s2; s_push(sl); }
} break;
case T_NIL : s_push(NULL); break;
case T_.SVAR :if ((s_v[t — u.varnr| == restofprg) && (lv == 1))

s_push(restofprg);
else make newstmt(s_v[t — u.var.nr]);

break;

224

default : printf("*** Corrupt\n"); exit(1);
}
if (head == NULL) old = head = s_pop();
else old = (old — next = s_pop());
t =t — next;
}

lv——; s_push(head);
}

[+ Shifts the statement pointer one statement ahead x/

next_stmt|()
{ /x currentstmt != NULL holds %/
switch(currentstmt — kind)
{ case K_.LINKUP: unstack(0); / environment %/
previous = currentstmt — next; Inorm = BODY;
currentstmt = currentstmt — next — next; break;
case K_LINKIFUP: previous = currentstmt — next; Inorm = BODY;
currentstmt = currentstmt — next — next; break;
case K_DO: stack(0,currentstmt — u.do_loop.index — u.var.entry);
/x environment %/
previous = currentstmt; lnorm = DOBODY;
currentstmt = currentstmt — u.do_loop.body; break;
case K_LOGICIF: previous = currentstmt; Inorm = IFBODY;
currentstmt = currentstmt — u.s_if.body; break;
case K_.GENIF: previous = currentstmt; Inorm = IFBODY;
currentstmt = currentstmt — u.s_if.body; break;
case K. WHILE: previous = currentstmt; Inorm = IFBODY; /« WHILE

currentstmt = currentstmt — u.s_if.body; break;
default: previous = currentstmt; Inorm = BODY;
currentstmt = currentstmt — next; break;
}

}

/x Applies the transformation %/

apply(s) stmt_ptr s;
{ stmt_ptr garbage=NULL;

change++;
if (previous == NULL)
{ s_push(s); create_program(); }
else switch(lnorm)
{ case BODY: previous — next = s; break;
case DOBODY: previous — u.do_loop.body = s; break;

225

case IFBODY: previous — u.s_if.body = s;
previous — kind = K_GENIF; break;
default : printf("*** Corrupt\n"); exit(1);
}
/* Reset the pointers x/
[+ detach old fragment x/
if ((currentstmt # NULL) && (currentstmt # endmarker))
{ garbage = currentstmt;
while (currentstmt — next # endmarker)
currentstmt = currentstmt — next;
currentstmt — next = NULL; }
/x find new settings */
currentstmt = endmarker;
while ((currentstmt # NULL) && (currentstmt # restofprg)
&& (currentstmt — kind # K_LINKUP)
&& (currentstmt — kind # K_LINKIFUP))
currentstmt = currentstmt — next;
if ((currentstmt # NULL) && ((currentstmt — kind == K_LINKUP) ||
(currentstmt — kind == K_LINKIFUP)))
{ previous = currentstmt — next;
link_up(previous,currentstmt — kind);
/x environment %/
if (currentstmt — kind == K_LINKUP)
unstack(0);
currentstmt = previous — next; lnorm = BODY;

}

else { int scan = 1;

if (previous == NULL)

{ if (give_program() # currentstmt)
previous = give_program();
else scan = 0; }

else if (Inorm == IFBODY)

{ if (previous — u.s_if.body # currentstmt)
previous = previous — u.s_if.body;
else scan = 0; }

else if (Inorm == DOBODY)

{ if (previous — u.do_loop.body # currentstmt)
previous = previous — u.do_loop.body;
else scan = 0; }

if (scan)
{ while (previous — next # currentstmt)
previous = previous — next;
Inorm = BODY; }
}

/x Deletes old statementlist x/

226

del_stmtlist(garbage);

}

/x Deletes new statementlist %/

reject(s) stmt_ptr s;
{ stmt_ptr garbage;

if ((s # NULL) && (s # restofprg))
{ garbage = s;
while ((s — next # restofprg) && (s — next # NULL))
S = s — next;
s — next = NULL;
del_stmtlist(garbage);
}
}

/* Shows the resulting fragment and gets the user response x/

int accept_it()
{ stmt_ptr s,show;

printf("** TRANSFORM INTO\n"); show = s = s_pop();
while ((show # NULL) && (show # restofprg))
{ show_stmt(show); show = show — next; / level 1 %/ }
if (show # NULL) printf(" \n");
if (exception == 1)
{ reject(s); return 0; }
else { printf("** ACCEPT (y/n/q/e) =="); readcommand();
if ((stremp(command,"y") == 0) || (stremp(command,"Y") == 0))
{ apply(s); return 1; }
else if ((stremp(command,"q") == 0) || (strcmp(command,"Q") == 0))
{ reject(s); return 2; }
else if ((stremp(command,"e") == 0) || (strcmp(command,"E") == 0))
{ reject(s); return 3; }
else
{ reject(s); return 0; }
}

¥
/x Performs all the transformations on the current program %/

start_app(dmp) int dmp;
{ register int i,j; int res,save[5],tbusy=1,localchange;

open_program(); change = 0;

227

while (tbusy)
{ for (i =0;1i < trafpt; i++)
{ printf("--------- Transformation %i ——--------- \n",i+1);
previous = NULL; localchange = 0;
currentstmt = give_program(); fstacks_init();
while (currentstmt # NULL)
{ for (j = 0; j < 100; j++) edef[j] = 0;
save[0] = loopnr; save[l] = assignno; save[2] = condno;
save[3] = fsympt; save[4] = f_storept; exception = 0;
if (t_match(currentstmt,trafoin[i]) &&
t_cond(currentstmt,trafocond]i]))
{ show_matchingblock(currentstmt);
comp_newblock(trafoout[i]); res = accept_it();
switch (res)
{ case 0: next_stmt(); break;
case 1: localchange++; break;
case 2: currentstmt = NULL; break;
case 3: currentstmt = NULL; tbusy = 0; i = trafpt; break;
}
if (res # 1)
{ loopnr = save[0]; assignno = save|[l]; condno = save[2];
fsympt = save[3]; f_storept = save[4]; }
}

else next_stmt();

}

if (localchange > 0)
datadep_analysis(give_program());

}

if (localchange > 0)
printf("\nx****x**xx New Pass *****x**x\n\n");
else tbusy = 0;

}

printf("\nNumber of transformations applied: %i\n\n",change);
if (change > 0)
{ dump_program(1,"program.txt"); dep_.dump(dmp);
fortran_symboltable(); }

T Environment

[+ Source to Source Compiler
by Aart J.C. Bik

C-program — Interactive environment %/

#include <stdio.h>

228

/x The Interactive environment variables %/

#define MAXSTRING 160

char command[MAXSTRING]; /« Two lines in 80 columns %/
char xargument;

int warn,showdep;

[+ Initializes variables of the main program and calls
the initializing functions of the parsers s/

init_program/()

{ warn = 0; [Default: warnings off x/
showdep = 3;
parsers_memory(); /4 Allocates dyn.mem. for the two parsers %/
dep_memory(); [+ Allocated dyn.mem. for dep.storage x/
st_memory(); [+ Allocates dyn.mem. for symbol-table x/
trafo_memory(); [x Allocates dyn.mem. for trafo-storage */

}

/* Reads the user defined transformations if the filename exists x/

read_trafos()
{ if (parser(argument)) printf("\nTerminated\n\n");
else printf("\n");

}

/¥ Reads in the FORTRAN program x/

read_program()
{ if (f_parser(argument,warn,showdep)) printf("\nTerminated\n\n");
else printf("\n");

}

[x Saves the FORTRAN program in memory %/

save_prg()
{ if (prg_defined|())

{ dump_program(0,argument); printf("\n"); }
else printf("\nNo program to save\n\n");

}

/* Compiles the source code using transormations read */

start()
{ if (prg_defined())

229

{ if (trafonum())

start_app(showdep);

else printf("\nNo transformations in memory\n\n"); }
else printf("\nNo program present to transform\n\n");

}

[+ Calls the editor vi x/

edit()
{ char call viMAXSTRING];

strepy (call_vi,"vi "); strcat(call_vi,argument); system(call_vi);

}

/x Changes the warning level %/

warningon() { warn = 1; printf("\nWarnings enabled\n\n"); }
nowarnings() { warn = 0; printf("\nWarnings disabled\n\n"); }
/* Changes the mode of showing dependences */

change_dep()
{ showdep = showdep++;
if (showdep > 3) showdep = 0;
switch(showdep)
{ case 0: printf("\nAll dependences\n\n"); break;
case 1: printf("\nOnly Flow, Anti and Output dependences\n\n"); break;
case 2: printf("\nOnly dependences on Assignment statements\n\n"); break;
case 3: printf(
"\nOnly Flow, Anti and Output dependences on Assignment statements\n\n");

break;
}

}

/¥ USER-Communication Procedures OUTPUT «/

welcome()

{ PIADEE(" \musk skt s sk sk sk ks sk ok ok ok ok ok ok ok ok ek sk sk ko sk sk kokokokok \ Ty 1)5
printf("*** FORTRAN 77 to FORTRAN 90 Restructuring Compiler **x\n");
printf("*** Written by Aart J.C. Bik *xx\n");
printf("*** under supervision of dr. H.A.G. Wijshoff *x*xx\n");
printf("*** UNIVERSITY OF UTRECHT 1991/1992 *xx\n");

PTG " sk s skt ko ok ok ok ok ok ek sk s sk sk skt skokokokokkokookk \n \n ") ;
printf(" ‘help' shows available commands\n\n");

230

bye()
{ printf("\nkskskskkkkkkxxx\n");
printf("*xx Bye! ***\n");
printf("sxkkrkkkkkkx\n\n");

}

show_options()
{ printf("\nAvailable Commands are:\n\n");

printf(" - exit\n");

printf(" - help\n");

printf(" - dep\n");

printf(" - nowarnings\n");

printf(" - readprg <filename.f>\n");

printf(" - readtrf <filename>\n");

printf(" - save <filename>\n");

printf(" - showdep\n");

printf(" - showprg\n");

printf(" - symtb\n");
(
(
(

printf(" - start\n");
printf(" - vi <filename>\n");
printf(" - warnings\n\n");
}
show _st/()

{ printf("\nSymbol table:\n\n");
if (st.number() > 0)
system("less program.sym");
else printf("Empty\n");
printf("\n");

}

show_prg()
{ if (prg_defined())
system("less program.txt");
else printf("\nNo Program in memory\n\n");

}

show_dep()
{ if (dep-defined|())
system("less program.dep");
else printf("\nNo Dependences\n\n");

}

/¥ USER-Communication Procedures INPUT «/

231

readcommand()
{ register int i,j;

char ch;

printf("=>");

[+ Skip space en tabs first */

do ch=getchar(); while (ch == "' || ch == '"\t"');

ungetc(ch,stdin); i = 0;
do { ch = getchar();
if (ch == '"\b")
{if(>0)i——;}
else if (i < MAXSTRING) command[i++] = ch;
} while (ch # '\n'); i——; command]i] = '\0";

/x Find possible argument %/
argument = &command[i];

for (j = 0;j < i;j++) if (command[j] == "' ')
{ command[j++] = '\0"';
while ((j < 1) && ((command[j] == " ") || (command[j] == '"\t"'))) j++;

argument = &command|j]; break;

}
}

/¥ Main module (Interactive mode)
Reads in and executes a user command %/

main()
{ welcome();
init_program();
while (1)
{ readcommand();
if (stremp(command,"help") == 0) show_options();

else if (stremp(command,"start") == 0) start();

else if (stremp(command,"readprg") ==0) read_program/();
else if (strcmp(command,"readtrf") == 0) read_trafos();
else if (stremp(command,"save") == 0) save_prg();

else if (stremp(command,"showprg") == 0) show_prg();
else if (stremp(command,"showdep") == 0) show_dep();
else if (stremp(command,"symtb") == 0) show_st();

else if (stremp(command,"vi") == 0) edit();

else if (stremp(command,"exit") == 0) { bye();exit(0); }
else if (strcmp(command,"nowarnings") == 0) nowarnings();
else if (strcmp(command,"dep") == 0) change_dep();

else if (stremp(command,"warnings") == 0) warningon();
else if (strcmp(command,"") == 0) ;

else printf("\n*** Unknown Command: %s\n\n",command);

}

232

233

